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1 Van de Redactie
Beste NVTI-leden,

Graag bieden wij u hierbij het vierde nummer aan van de jaarlijkse NVTI-Nieuwsbrief. Bij het
samenstellen hebben we weer de formule van de vorige drie nummers gevolgd. Zo vindt u naast het
programma, van de jaarlijkse Theoriedag en de bijgewerkte ledenlijst ook weer enkele bijdragen van
collega’s met een korte inleiding in hun speciale gebied van expertise. Evenals voorgaande jaren
zouden deze Nieuwsbrief en de Theoriedag niet tot stand hebben kunnen komen zonder de finan-
ciele steun van onze sponsors: EW NWO, Elsevier Publishing Company, en de onderzoekscholen
IPA, SIKS en OZL. Namens de NVTI gemeenschap onze hartelijke dank voor deze middelen die
ons voortbestaan mogelijk maken!

De redactie,

Mieke Bruné (mieke@cwi.nl)
Jan Willem Klop (jwk@cwi.nl)
Jan Rutten (janr@cwi.nl)

2 Samenstelling Bestuur

Prof.dr. J.C.M. Baeten (TUE)

Dr. H.L. Bodlaender (UU)

Prof.dr. J.W. Klop (VUA/CWI) voorzitter

Prof.dr. J.N. Kok (RUL) Prof.dr. J.-J.Ch. Meyer (UU)
Prof.dr. G.R. Renardel de Lavalette (RUG)

Prof.dr. G. Rozenberg (RUL)

Dr. J.J.M.M. Rutten (CWI) secretaris

Dr. J. Torenvliet (UvA)

3 Van de voorzitter
Geacht NVTI-lid,

In het afgelopen jaar is ons Bestuur met enkele nieuwe leden uitgebreid, om een betere over-
dekking van geografie en onderwerpen te krijgen. Ook dit jaar heeft het Bestuur zich beijverd om
een interessante Theoriedag te organiseren. Deze zal gehouden worden op vrijdag 10 maart, op
een voor ons nieuwe locatie (zie programma in dit nummer). We hopen en vertrouwen erop dat
het programma voor velen van u interessant is. Graag tot ziens op 10 maart in Utrecht!

Jan Willem Klop, voorzitter NVTI



4 Theoriedag 2000

Vrijdag 10 maart 2000, Vergadercentrum La Vie, Utrecht

Het is ons een genoegen u uit te nodigen tot het bijwonen van de Theoriedag 2000 van de NVTI,
de Nederlandse Vereniging voor Theoretische Informatica, die zich ten doel stelt de theoretische
informatica te bevorderen en haar beoefening en toepassingen aan te moedigen. De Theoriedag
2000 zal gehouden worden op vrijdag 10 maart 2000, in:

Vergadercentrum La Vie, La Viestraat 351, Utrecht

(nabij CS Utrecht, op tien minuten loopafstand van de trein), en is een voortzetting van de
reeks jaarlijkse bijeenkomsten van de NVTI die vijf jaar geleden met de oprichtingsbijeenkomst
begon.

Evenals vorige jaren hebben wij een aantal prominente sprekers uit binnen- en buitenland be-
reid gevonden deze dag gestalte te geven met voordrachten over recente en belangrijke stromingen
in de theoretische informatica. Naast een wetenschappelijke inhoud heeft de dag ook een informa-
tief gedeelte, in de vorm van een algemene vergadering waarin de meest relevante informatie over
de NVTI gegeven zal worden, alsmede presentaties van de onderzoekscholen.

Programma

09.30-10.00: Ontvangst met koffie

10.00-10.10: Opening

10.10-11.00: Lezing Prof.dr. A. Pnueli (The John von Neumann Minerva Center for Verifi-
cation of Reactive Systems, Weizmann Institute of Science, Israel) Titel: Uniform Verification of
Parameterized Networks

11.00-11.30: Koffie

11.30-12.20: Lezing Prof.dr. E. Brinksma (Universiteit Twente) Titel: Stochastic Process
Algebras: Linking Process Descriptions with Performance

12.20-12.50: Presentatie Onderzoeksscholen (OZL, IPA, SIKS)

12.50-14.10: Lunch (Zie beneden voor registratie)

14.10-15.00: Lezing Prof.dr. S. Micali (MIT, Boston) Titel: The Quest for Efficient Proofs

15.00-15.20: Thee

15.20-16.10: Lezing Dr.ir. H. Te Riele (CWI, Amsterdam) Titel: Factoring algorithms and
their complexity, with application to cryptography

16.10-16.40: Algemene ledenvergadering NVTI

Abstracts van de voordrachten

Uniform Verification of Parameterized Networks

Prof.dr. A. Pnueli

(The John von Neumann Minerva Center for Verification of Reactive Systems, Weizmann Institute
of Science, Israel)

A parameterized network is a system consisting of many interconnected processes, whose size
is a parameter. A typical example is a set of processes situated on a ring whose size is a parameter
N. Usually, each individual process in the network is a finite-set program communicating with its
close neighbors.

We can always verify properties of particular instances of such a network, e.g. consider a
process-ring of sizes 5, 7, and 11, by automatic model-checking techniques. However this is not
in general sufficient in order to conclude that the properties are valid over ALL instances of the
system. Uniform verification of such systems attempts to establish in one verification effort the
validity of the considered properties for EVERY value of the parameter N.

In the talk, we will survey several approaches to the solution of this problem. The three
approaches to be reviewed are the formation of Network Invariants, Finitary Abstraction, and
Regular Symbolic Model-Checking, which performs symbolic model checking over a rich assertional
language which can capture infinite sets of states.



Stochastic Process Algebras: Linking Process Descriptions with Performance
Prof.dr. E. Brinksma

(Universiteit Twente)

In this presentation we will give an overview of the research on stochastic process algebras, a
branch of process algebra that has developed over the last decade. Like ordinary process algebra,
stochastic process algebra (SPA) provides a compositional model for the description and analysis
of complex distributed systems, such as network protocol systems. At the same time SPAs are
extended with stochastic features to enable the compositional and systematic derivation of per-
formance models from such descriptions. We will discuss the motivation and potential benefits of
the use of SPAs, and present the main conceptual issues in their development. In particular, we
will present so-called Markovian process algebras that allow for performance analysis in terms of
Continuous Time Markov Chains (CTMC), as well as a non-Markovian process algebra enabling
the use of more general performance models.

The Quest for Efficient Proofs
Prof.dr. S. Micali
(MIT, Boston)

Efficiently proving the verity of a statement is of crucial importance, but what should EFFI-
CIENTLY PROVING mean? In the last three decades, much effort has been devoted to answer this
question, yielding the notions of NP, Interactive Proofs, and Probabilistically Checkable Proofs.

Computationally Sound (CS) Proofs provide a new answer to this everlasting question. Infor-
mally, a CS proof of a statement S consists of a short string which (1) is as easy to find as possible,
(2) is very easy to verify, and (3) computationally guarantees the verity of S: In essence, CS proofs
of false statements either do not exist or are practically impossible to find.

CS proofs provide a quite effective way to handle membership in computationally hard lan-
guages (such as Co-NP complete ones) and correctness of long computations.

Factoring algorithms and their complexity, with application to cryptography,
Dr.ir. H. Te Riele
(CWI, Amsterdam)

In Volume 2: “Seminumerical algorithms” of Knuth’s “The art of computer programming”
(first edition appeared in 1969) a prominent place has been reserved for the problem of factor-
ing large numbers. The publication, in 1978, of the RSA public-key cryptographic system has
stimulated renewed interest in factoring, because the security of RSA depends on the difficulty of
factoring large numbers and because the computational complexity of factoring large numbers is
still unknown.

As a result, the world record for factoring (difficult) large numbers has been pushed forward
from about 40 digits in 1969 to 155 digits in 1999. We will explain the algorithmic and com-
puter developments behind this progress. In addition, details will be given of the algorithmic and
computational effort invested in the current factoring world record: a 512-bits’ (= 155 decimal
digits) RSA key. Such keys are widely used to protect E-commerce on the Internet, and in SSL
handshake protocols.

Lidmaatschap NVTI

Alle leden van de voormalige WTI (Werkgemeenschap Theoretische Informatica) zijn automa-
tisch lid van de NVTI geworden. Aan het lidmaatschap zijn geen kosten verbonden; u krijgt de
aankondigingen van de NVTI per email of anderszins toegestuurd. Was u geen lid van de WTI
en wilt u lid van de NVTI worden: u kunt zich aanmelden bij het contactadres beneden (M.
Bruné, CWI), met vermelding van de relevante gegevens, naam, voorletters, affiliatie indien van
toepassing, correspondentieadres, email, URL, telefoonnummer.



Lunchdeelname

Het is mogelijk aan een georganiseerde lunch deel te nemen; hiervoor is aanmelding verplicht.
Dit kan per email of telefonisch bij Mieke Bruné (mieke@cwi.nl, 020-592 4249), tot een week
tevoren (3 maart). De kosten kunnen ter plaatse voldaan worden; deze bedragen (ongeveer)

f 21,50. Wij wijzen erop dat in de onmiddellijke nabijheid van de vergaderzaal ook uitstekende
lunchfaciliteiten gevonden kunnen worden, voor wie niet aan de georganiseerde lunch wenst deel
te nemen.



5 Mededelingen van de onderzoekscholen

Hieronder volgen korte beschrijvingen van de onderzoekscholen:
e Instituut voor Programmatuurkunde en Algoritmiek;
¢ Landelijke Onderzoekschool Logica;

® School voor Informatie- en KennisSystemen;

5.1 Institute for Programming research and Algorithmics

The research school IPA (Institute for Programming Research and Algorithmics) educates re-
searchers in the field of programming research and algorithmics, this encompasses the study and
development of formalisms, methods and techniques to design, analyse, and construct software sys-
tems and components. IPA has three main research areas: Algorithmics & Complexity, Formal Me-
thods and Software Technology. In 1999, the composition of IPA was unchanged. Researchers from
eight universities (University of Nijmegen, Leiden University, Eindhoven University of Technology,
University of Twente, Utrecht University, University of Groningen, Vrije Universiteit Amsterdam,
and the University of Amsterdam) , the CWI and Philips Research (Eindhoven) participated.
The curriculum of IPA has two parts; a series of three 'basic courses’ designed to provide Ph.D.
students with an overview of research in each of the three main areas. In 1999 the basic course
on Formal Methods was given. Besides these courses with fixed subjects there are two multi-day
events per year, the Spring-days and Fall-days, which focus on upcoming new subjects. In 1999
the Spring-days were dedicated to Probabilistic Methods in Computer Science, and the Fall-days
to Component-based Software Development. '
Besides that, IPA was involved in the organisation of international activities. Working together
with the research schools BRICS (Denmark) and TUCS (Finland) in the European Educational
Forum (EEF), the Synergos Summerschools on ‘Logic and Computation’ (Herriot-Watt University,
Edinburgh) and ‘Semantics of Computation’ (University of Aarhus, Denmark) were realized.

Ph.D. Defenses in 1999

E. Voermans

Inductive Datatypes with Laws and Subtyping — A Relational Model
Faculty of Mathematics and Computing Science, TUE

H. ter Doest

Towards Probabilistic Unification-based Parsing

Faculty of Computer Science, UT

J.P.L. Segers

Algorithms for the Simulation of Surface Processes

Faculty of Mathematics and Computing Science, TUE

E.I. Barakova

Learning Reliability: a Study on Indecisiveness in Sample Selection
Faculty of Mathematics and Natural Sciences, RUG

M.P. Bodlaender

Scheduler Optimization in Real-Time Distributed Databases
Faculty of Mathematics and Computing Science, TUE



M.A. Reniers

Message Sequence Chart: Syntax and Semantics

Faculty of Mathematics and Computing Science, TUE
J.P. Warners

Nonlinear approaches to satisfiability problems

Faculty of Mathematics and Computing Science, TUE
J.M.T. Romijn

Analysing Industrial Protocols with Formal Methods
Faculty of Computer Science, UT

P.R. D’Argenio

Algebras and Automata for Timed and Stochastic Systems
Faculty of Computer Science, UT

G. Fdbidn

A Language and Simulator for Hybrid Systems

Faculty of Mechanical Engineering, TUE

J. Zwanenburg

Object-Oriented Concepts and Proof Rules

Faculty of Mathematics and Computer Science, TUE

R.S. Venema

Aspects of an Integrated Neural Prediction System
Faculty of Mathematics and Natural Sciences, RUG

J. Saraiva

A Purely Functional Implementation of Attribute Grammars
Faculty of Mathematics and Computer Science, UU

R. Schiefer

Viper, A Visualisation Tool for Parallel Progam Construction

Faculty of Mathematics and Computer Science, TUE

Activities in 2000

During the past four years, IPA has organised a series of “Synergos Summer Schools” working
together with BRICS, TUCS and UKII in the EEF. In the next four years this activity will be
continued: from 2000 - 2004 the EEF will organise two series of four Summer Schools, sponsored
by the European Community in the IHP-programme of the fifth framework. The EEF Foundati-
ons Series will provide in-depth foundational knowledge to young researchers on topics which are
traditionally at the core of research in EEF (Deduction and Theorem Proving, Logical Methods,
Specification Refinement and Verification, Concurrency). The EEF Trends Series will focus on
important topics that have recently emerged (Probabilistic Methods, Software Architecture, Mas-
sive Data Sets, Mobile Computing), and tries to distill from them “what is really going on”. The
first event in the Trends Series will be staged by IPA this summer.

On the homefront, IPA will organise the Spring-days (the topic: UML), the Fall-days and
two standard courses: Software Technology and Algorithmics & Complexity, each covering one of
IPA’s main research areas. To stay informed on the activities of IPA, you can download the IPA
newsletter (in Dutch) from our Web-site.

IPA Spring Days on UML
April 26 - 28, 2000, Motel Eindhoven, Eindhoven, The Netherlands.

UML (Unified Modeling Language) has rapidly become a de facto standard in the software
industry. The existence of a widely used and powerful language offers new possibilities for
connecting academic research to industrial practice. This seminar seeks to explore these
possibilities. Further information will become available through our website.

see: http://www.win.tue.nl/cs/ipa/activities/lentedagen2000.html



EEF TrendSchool on Formal Methods and Performance Analysis

July 3 - 7, 2000, Golden Tulip Valmonte, Nijmegen, The Netherlands.

Working together with BRICS, TUCS and UKII in the EEF, IPA organises the first in a series
of four EEF schools on Trends in computer science, sponsored by the European Community
in the IHP programme of the fifth framework. This event is dedicated to Probabilistic
Methods.

see: http://fmt.cs.utwente.nl/conferences/fmpa2k/

Addresses

Visiting address Postal address
Eindhoven University of Technology IPA, Fac. of Math. and Comp. Sci.
Main Building HG 7.17 Eindhoven University of Technology
Den Dolech 2 P.O. Box 513
5612 AZ Eindhoven 5600 MB Eindhoven
The Netherlands The Netherlands

tel. (4+31)-40-2474124 (IPA Secretariat)
fax (+31)-40-2475361

e-mail ipa@tue.nl

url http://www.win.tue.nl/cs/ipa/

5.2 The Dutch Research School in Logic (OzsL), door: Jan van Eijck

The Dutch Research School in Logic (OzsL) is active in three main areas: mathematical logic, logic
in linguistics and philosophy, and logic in computer science. Formal participants in the School
are the University of Amsterdam, the Free University in Amsterdam, the University of Utrecht,
the University of Groningen, and Tilburg University. In addition, there are numerous associate
members, to cater for the need of those who have active scientific links with the OzsL community,
while political reasons argue against full participation. The general policy of the school is to foster
cooperation rather than competition with neighbouring schools, and associate membership is open
for all our neighbours.

Recently, prof Géran Sundholm (philosophical logic, University of Leiden) and prof Rob van
der Sandt (philosophical logic, Nijmegen University) joined OzsL.

International cooperation agreements exist with Stanford University, the University of Edin-
burgh, the University of the Saarland, and the University of Stuttgart. Funding is available for
visitor exchanges within this international network, and regular international workshops take place
within the network.

The Ph.D. courses offered by the school fall in two categories: courses that are part of the
‘school week curriculum’, and master classes. School weeks are offered twice a year, in Spring and
in Autumn. To give an idea of the contents, here is a recent sample:

Autumn 1999 School Week, Amsterdam The curriculum consisted of four tutorials, in logic
and model theory, logic and information flow analysis, logic and agent technology, and history of
logic. In more detail:

e Ehrenfeucht’s Game, by Kees Doets,

Information Flow From Source to Sink, by Jeroen Groenendijk, Reinhard Muskens, Robert
van Rooy and Albert Visser

Intelligent Agents, by Catholijn Jonker, John-Jules Meyer, Jan Treur, Rineke Verbrugge,

The Development of Logic from Bolzano to Heyting and Gentzen, by Géran Sundholm.



Further details can be found in the web archive of the School, at address
http://www.ozsl.uva.nl/archive.html.

In combination with the Autumn School Week the yearly Accolade Event takes place: an
occasion where PhD students within the school present their work to the outside world in an
informal setting. Somewhat more than a year ago it was decided to change the character of
this event. It was felt by the OzsL Board that previous Accolade meetings had to strike an
uneasy compromise between informing the community about how individual Ph.D. projects were
progressing on one hand, and functioning as an internal workshop where our Ph.D. students could
fine-tune their conference presentation skills in a friendly and supportive setting. Therefore the
Board decided to separate these two functions, and to relegate the second to the regular colloquia.

Accolade New Style now has as its single aim to inform the Dutch logic community about how
the Ph.D. projects within the School are going, irrespective of whether these projects are in an
initial, intermediate or final stage of research. Accolade New Style was held for the second time
last December. The change in style is generally felt to be an improvement, and participants are
enthousiastic about the formula, where they get useful response in a supportive setting.

Another recent innovation is the organisation of a complement event to Accolade in Spring.
This ‘Accolade for Adults’ (also known under various silly nicknames) is meant to create an
opportunity for staff members within the School to give brief outlines of their research, for an
audience consisting of their colleagues and the PhD students of the School.

OzsL issues LIN (‘Logic in the Netherlands’), a newsletter for the Dutch logic community
in the broadest possible sense, that appears at rather irregular intervals, both on paper and
electronically. Subscription is free of charge; please send an email to the OzsL Office Manager
dr Peter Blok at pblok@wins.uva.nl to subsribe. Further information about the school and its
activities is available electronically, at http://www.ozsl.uva.nl.

5.3 School voor Informatie- en KennisSystemen SIKS, door: R.J.C.M.
Starmans

Inleiding

De School for Information and Knowledge Systems (SIKS) zag begin 1996 het licht. Het initiatief
tot de oprichting was drie jaar eerder genomen door een groep onderzoekers op het terrein van
kunstmatige intelligentie, database theorie en software engineering. Zij trokken zich enige dagen
terug op het Vlaamse platteland om de haalbaarheid te onderzoeken van een nieuwe onderzoek-
school. Deze zou zich moeten toeleggen op fundamenteel en toepassingsgericht onderzoek op het
gebied van de informatica, meer in het bijzonder op het terrein van informatie- en kennissystemen.
Daarnaast moest zij borg staan voor een hoogwaardige promovendi-opleiding en bovenal een ei-
gen en herkenbare plaats innemen ten opzichte van andere samenwerkings-verbanden binnen de
informatica in Nederland.

Het benodigde universitaire draagvlak bleek aanwezig en de initiatieven resulteerden in 1994 in
een formeel voorstel tot oprichting van onderzoekschool SIKS. Twee jaar later werd conform de
WHW en overeenkomstig het verkavelingsplan van de Stichting Informatica Onderzoek Nederland
(SION) een interuniversitaire samenwerkingsovereenkomst gesloten. SIKS kon van start onder het
penvoerderschap van de Vrije Universiteit van Amsterdam. De Universiteit Utrecht, de Technische
Universiteit Delft, de Technische Universiteit Eindhoven, de Universiteit Twente, de Rijksuniver-
siteit Leiden en de Universiteit Maastricht traden eveneens toe, korte tijd later gevolgd door de
Universiteit van Amsterdam. Ook met het Centrum voor Wiskunde en Informatica, de Erasmus
Universiteit Rotterdam en de Katholieke Universiteit Brabant werden samenwerkingsverbanden
aangegaan.

KNAW-erkenning in 1998

Al spoedig groeide het besef dat accreditatie door de Erkenningscommissie van de KNAW een
belangrijke waarborg vormt voor de continuiteit van de school. Een grondige herbezinning op



de positie van de school was hiertoe nodig. Zo werd bij voorbeeld de missie van SIKS, zoals
indertijd verwoord in het oorspronkelijke oprichtingsvoorstel, ingrijpend herzien. Qok koos SIKS
er nadrukkelijk voor het onderzoek te centreren rond een vijftal research foci: knowledge science,
cobperatieve systemen, requirements engineering en formele specificatie van IKS, multimedia en
tot slot architecturen van IKS. De keuze en invulling van deze aandachtsgebieden werden ingegeven
door interne ontwikkelingen binnen de wetenschapsgebieden waarop SIKS actief is, maar sloten
bovendien nauw aan bij externe beleidsinitiatieven en onderzoeksagenda’s van met name NWO en
SION. Zoals bekend slaagde SIKS in haar opzet. In mei 1998 was de erkenning door de KNAW
een feit.

Activiteiten in 1999

SIKS begon 1999 met de aanstelling van een nieuwe codrdinator. Richard Starmans volgde Koen
Versmissen op per 1 januari 1999. Ook werd hard gewerkt om het onderwijsprogramma verder
van de grond te krijgen, het onderzoeksprogramma, te versterken, de interne organisatie van SIKS
te verbeteren en bovenal de herkenbaarheid van de school te bevorderen door een duidelijke po-
sitionering ten opzichte van de twee andere Nederlandse onderzoekscholen op het terrein van de
informatica. Een aantal activiteiten uit 1999 zal hier kort de revue passeren.

Vier promovendi-cursussen

Om te beginnen werden vier landelijke promovendicursussen georganiseerd, die ook voor promo-
vendi van andere scholen en (in beperkte mate) voor externe deelnemers werden opengesteld. Van
31 mei tot en met 4 juni 1999 vonden in conferentiecentrum Woudschoten te Zeist de promoven-
dicursussen Combinatorische Methoden en Intelligent Systems plaats. Van 29 november tot en
met 3 december volgden in Hotel Apeldoorn Systeemmodelleren en Kennismodelleren. Deze vier
cursussen maken allen deel uit van het verplichte basisprogramma van de school. De cursussen
werden in totaal door ruim 50 promovendi gevolgd.

Promoties

De laatste jaren kon een groeiend aantal promoties binnen de school worden gesignaleerd, zowel
van eerste-geldstroom promovendi, als van promovendi die door de industrie worden bekostigd.
Om die reden is SIKS in 1998 van start gegaan met een eigen dissertatie-reeks. In 1999 konden
hierin de volgende SIKS-proefschriften worden bijgeschreven.

99-1 Mark Sloof (VU)
Physiology of Quality Change Modelling; Automated modelling of Quality Change of Agricultural
Products
Promotor: prof.dr. J. Treur
Co-promotor: dr.ir. M. Willems
Promotie: 11 mei 1999

99-2 Rob Potharst (EUR)
Classification using decision trees and neural nets
Promotor: prof. Dr. A. de Bruin
Co-promotor: dr. J.C. Bioch
Promotie: 4 juni 1999

99-3 Don Beal (Queen Mary and Westfield College)
The Nature of Minimax Search
Promotor: Prof.dr. H.J.van den Herik
Promotie: 11 juni 1999
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99-4 Jacques Penders (KPN Research)
The practical Art of Moving Physical Objects
Promotor: Prof.dr. H.J. van den Herik
Co-promotor: dr. P.J. Braspenning
Promotie: 11 juni 1999

99-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven Specification of Network
Information Systems
Promotor: Prof.Dr. R.A. Meersman
Co-promotor: Dr. H. Weigand
Promotie: 1 oktober 1999

99-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems
Promotor: prof.dr. J. Treur
Copromotor: dr. F.M.T. Brazier
Promotie: 30 september 1999

99-7 David Spelt (UT)
Verification support for object database design
Promotor: Prof. Dr. P.M.G. Apers
Assistent promotor: Dr. H. Balsters
Promotie: 10 september 1999

99-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent Mechanism for Discrete Realloca-
tion
Promotor: Prof. dr. H.J. van den Herik
Co-promotor: Dr. P.J. Braspenning
Promotie: 3 december 1999

SIKS-dag 1999

Op 1 oktober vond de jaarlijkse SIKS dag plaats, de ontmoetingsdag van de bij SIKS aangesloten
onderzoekers. Plaats van handeling was dit jaar Grand Hotel Krasnapolsky te Amsterdam. De
bijeenkomst had niet alleen tot doel de KNAW-erkenning enige luister bij te zettten, maar gaf
het bestuur tevens de gelegenheid vooruit te blikken op een aantal activiteiten die in de nabije
toekomst worden georganiseerd. Ook vond er tijdens de dag een mini-symposium plaats, waarop
Robert Meersman (VU Brussel), Roel Wieringa (UT) en Michael Wooldridge (Queen Mary and
Westfield College, London) als gastspreker optraden.

Masterclasses en doctoraalconsortium

Voorts organiseerde SIKS op 1 en 2 November in Maastricht, voorafgaand aan BNAIC 99, een
tweetal masterclasses voor promovendi en stafmedewerkers. Op maandag 1 november beet Jona-
than Schaeffer (University of Alberta) de spits af met ”Heuristic Search: Tools of the Trade”. De
tweede masterclass werd de volgende dag verzorgd door Tom Mitchell (Carnegie Mellon Univer-
sity) die de aanwezigen ” An overview of Machine Learning” bood. Op dinsdag 2 november vond
tot slot ook een doctoraalconsortium plaats. Vier promovendi gaven uiteenzettingen over hun
onderzoeksresultaten dan wel onderzoeksplannen ten overstaan van een forum van stafleden. Elke
SIKS-promovendus dient tijdens zijn opleiding ten minste 1 maal aan een doctoraalconsortium
deel te nemen.
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Samenwerking SIKS-bedrijfsleven

Ook is in 1999 een aanvang gemaakt met de in 1998 door de Erkenningscommissie aanbevolen
samenwerking met het bedrijfsleven. Deze inspanningen moeten op zeer korte termijn leiden tot
de inrichting van het Platform SIKS industrie (PSI). Tijdens de studiedagen van SIKS op 13
en 14 januari 2000 zijn hiertoe de eerste stappen gezet. Bij de bijeenkomst waren verschillende
geinteresseerde bedrijven aanwezig.

Plannen voor 2000

Oprichting Platform SIKS- Industrie De verwachting is dat de oprichting van het Platform in het
voorjaar van 2000 gerealiseerd zal worden.

Electronisch Magazine SIKSTANT

SIKS hoopt op korte termijn met een eigen electronisch magazine SIKSTANT de deelnemers in de
school en de externe relaties beter te informeren over projecten en andere ontwikkelingen binnen
SIKS en haar naaste omgeving.

Onderwijsprogramma

Ook in 2000 zal een viertal promovendi-cursussen worden georganiseerd. Van 5 tot en met 9 juni
staan Databases en Interactieve Media op het programma. In december zullen twee cursussen
worden verzorgd waarvan de inhoud op dit moment nog niet bekend is. Master-classes zullen naar
verwachting plaatsvinden eind augustus in Amsterdam en tijdens de BNAIC 2000 te Tilburg.

Research foci

De erkenningscommissie verwacht dat het onderzoek zich voor een belangrijk deel zal richten op
thema’s die verband houden met voornoemde research foci en meent dat dit de coherentie van het
onderzoeksprogramma ten goede zal komen. Waar mogelijk zal daarom worden getracht weten-
schappelijke en meer gespecialiseerde onderwijsactiviteiten zoveel mogelijk te laten aansluiten bij
de research foci. Zo zal SIKS in het voorjaar van start gaan met een colloquium over codperatieve
systemen. :

Voor meer informatie over SIKS en haar activiteiten kunt u de site van de onderzoekschool
raadplegen (www.siks.nl) of contact opnemen met het Bureau van SIKS: 030-2534083, email:
office@siks.nl.
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6 Wetenschappelijke bijdragen

6.1 Perspectives on Integer Programming: Karen Aardal

Informatica Instituut, Universiteit Utrecht, Postbus 80089, 3508 TB Utrecht.
e-mail: aardal@cs.uu.nl. URL: http://www.cs.uu.nl/people/aardal/

Perspectives on Integer Programming

Karen Aardal*

In integer programming we want to minimize or maximize a linear objective function
subject to a set of constraints formulated as linear equalities or inequalities. The deci-
sion variables are allowed to take integer values only. Mathematically we can formulate
the integer programming problem as follows:

min{c’z: ¢ € PNZ"} (1)

where P = {& € R" : Az < b}. One typically assumes that the elements of the
matrix A and the vectors ¢ and b are rational. What makes this simple problem so
interesting to consider? There are numerous theoretical questions one comes across
when analyzing the problem, there are several algorithmic challenges surrounding the
resolution, and many problems from practice can be formulated as integer programming
problems. So, there is something for almost everybody! Integer programming is a true
melting pot for mathematicians, computer scientists, engineers, production planners,
economists, and many, many more. In this note I will try to sketch a few issues of theory,
algorithms, and practice, and I also want to give my personal view on some interesting
questions to consider in the future. Before starting I will describe an application of
integer programming.

Example 1 In telecommunication there are many problems that can be formulated as
integer programming problems. Here I will describe one that is known as the survivable
network design problem (see e.g. Stoer, 1992). We are given a set of telephone offices,
and the problem is to decide on how to connect the offices such that the obtained
network is “survivable”, and such that the total cost of placing the connections between
the offices is minimized. In network terminology we refer to the telephone offices as
the nodes of the network, and the connections between pairs of offices as the edges
of the network. A survivable network means that for each pair of distinct nodes there
should exist a given minimum number of edge-disjoint paths. The offices are partitioned
into different categories. Typical categories are: main offices, which are given label 2;
ordinary offices, which are given label 1; and optional offices, which are given label 0. We
denote the label belonging to node s by r;. The minimum number of edge-disjoint paths
between a pair (s,t) of offices, denoted q(s,t), is then the minimum of the two node
labels, i.e., q(s,t) := min{r,, r;}. To formulate this problem as an integer programming
problem we introduce the decision variables z. for each possible edge e in the network.
Variable z, takes value 1 if edge e is included in the network, and value 0 otherwise.

*Informatica Instituut, Universiteit Utrecht, Postbus 80089, 3508 TB Utrecht.
e-mail: aardal@cs.uu.nl. URL: http://www.cs.uu.nl/people/aardal/
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The objective is to minimize:

E CeZTe

all edges e

where c, is the cost of including edge e. The constraints that ensure survivability can
be modeled as:

Z Ze > con(W) for all subsets Wof the node setV such that @ ZW £V.
{e: l[enW]=1}

Here con(W) is defined to be con(W):= max{q(s,t): se W, teV \ W}. We further
need to impose integrality and bounds on the variables:

0<z.<1 foralledgese, =z, integral for all edges e.
|

For the reader interested in more literature, I recommend the textbooks by Schrijver
(1986), Nemhauser and Wolsey (1988), and Grétschel, Lovész, and Schrijver (1988),
and the recent survey articles by Marchand, Martin, Weismantel, and Wolsey (1999),
and Aardal, Weismantel and Wolsey (1999).

1 How it all started

The field of integer programming was started by Ralph E. Gomory. After graduating
at Princeton University and serving in the U.S. Navy he worked for the U.S. Navy as
a consultant while holding a position at Princeton. The following is a quotation from
an interview with Gomory (Aardal, 1996):

“So, every few weeks I would go down there and consult with them on prob-
lems. One of these problems was actually an integer programming problem,
but it was formulated as a linear programming problem, and the variables
came out noninteger. This was very awkward since they represented the
number of aircraft carriers. The answer 2.2 would not actually be so bad,
but 0.6 is awful because you then have to ask if you need any aircraft car-
riers at all. As soon as I saw that I thought that in solving integer linear
equations there is a diophantine way, so probably, in solving integer lin-
ear inequalities there should be a diophantine way as well. Of course I was
wrong, but that is how I started my work. We needed the answer.”

At that time Dantzig’s (Dantzig, 1951) simplez algorithm for solving the linear pro-
gramming problem

min{c'z : & € P} ()

was known and had caused a lot of excitement among mathematicians and economists,
so it was natural to think about an algorithm, based on the simplex algorithm, for
solving the integer programming problem (1). The simplex algorithm works as follows.

14



The set P is the set of vectors £ € R" satisfying a finite set of linear inequalities.
Such a set is called a polyhedron. Notice that the linear programming problem (2) is
a relazation of the integer programming problem (1), which implies that min{cTz :
x € P} < min{cTz : = € PNZ"}. We call this relaxation the linear programming
relazation, or LP-relaxation for short. It is easy to see that if we maximize or minimize a
linear function over a polyhedron, then an optimal solution is found in an extreme point
of the polyhedron if the objective value is bounded. Assume that we are considering a
minimization problem. What the simplex algorithm does is to iterate from one extreme
point of P to another such that the objective value does not increase. To find a initial
extreme point is easy. If we consider the integer programming problem then the obvious
problem in this context is that an extreme point of the polyhedron P is not necessarily
integral. The idea of Gomory was to iteratively add new linear inequalities in order
to get rid of “unnecessary” parts of P such that eventually the optimal solution to
the resulting LP-relaxation becomes integral. The formulation of each of these linear
inequalities was obtained from the optimal solution of the current LP-relaxation. Since
each linear inequality is defined by a hyperplane, and since each of Gomory’s inequalities
is “cutting off” parts of P, his algorithm is called Gomory’s cutting plane algorithm
(Gomory himself called it “the fractional cut method”). Gomory (Gomory, 1958, 1960)
proved that under some technical assumptions his algorithm terminates within a finite
number of iterations with an optimal integer solution, or a proof that P does not contain
an integer vector. Gomory later developed cutting planes for mixed integer problems,
i.e., problems where a given subset of the variables may only take integer values, and
where the remaining variables may take real values. Up to this day the idea of adding
cutting planes to the inequalities defining P is the dominant technique used to solve
integer and mixed integer programming problems.

Until quite recently Gomory’s cutting plane algorithm had the reputation of not
being very practical. Such a statement is made in many textbooks over the years. There
are several reasons for this. First, the computers at that time were not very powerful, so
solving even modest size linear programming problems, on which Gomory’s algorithm
relies, was not very easy. Second, the linear programming software did not let the
user iteratively add new inequalities in an easy way, making cutting plane algorithms
cumbersome to use. Third, the early implementations did exactly what Gomory said in
his proof that the algorithm terminates in a finite number of steps: add one inequality
at the time and reoptimize. First of all “finite” can be very large, and one would not like
to add an unnecessarily large number of inequalities as the running time of the simplex
algorithm in practice is depending more on the number of constraints in the formulation
than the number of variables. Moreover, Gomory inequalities are typically dense, i.e.,
they contain many nonzero elements, which may result in numerical problems. Today,
the computers are amazingly more powerful than fifty years ago, but this is true also for
the linear programming solvers. Solving linear programming problems with a million
of variables is possible nowadays. It is important to note that only about half of this
“computational” progress made during the past couple of decades is due to faster
computers. The rest is due to better algorithms and data structures, and to more
efficient implementations. The improved algorithms and implementations can deal with
numerical issues caused by the dense Gomory inequalities so the only issue left is then:
how should we add the inequalities? One at the time? What if the convergence is
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very slow? Recent work (see e.g. Balas et al., 1996) has shown that one should add
more inequalities at each iteration, and that one should stop once the improvements
of adding cuts is getting small. Instead of adding many weak inequalities it is better
to partition the set of feasible solutions into smaller parts. The way to do this is by
branch-and-bound, which we will describe very briefly below. In recent computational
work Gomory inequalities, in particular the mixed-integer inequalities, have been used
with great success, see further Marchand et al.

2 Modern cutting plane techniques

One of the questions that were, at least partially, inspired by the relative ineffectiveness
of the early trials with Gomory’s cutting planes is whether the Gomory inequalities are
“strong” in the sense that they cut deep into the polyhedron P, without, of course,
cutting off any integer feasible vectors. One way of looking at the problem is as follows:
“I know how to solve linear programming problems, so why don’t I try to find the ideal
linear relaxation of my problem?” The best possible linear description of the feasible
set X = {P NZ"} is the convex hull of X, conv(X), see Figure 1. The set conv(X)

conv(X)

Figure 1: THE CONVEX HULL OF X.

is again a polyhedron, and moreover, each extreme point of conv(X) is integral! So,
problem (1) is equivalent to:

min{c’z : x € conv(X)} 3)

Note that problem (3) is a linear programming problem, which is polynomially solvable.
Readers familiar with complexity theory will think that I am either foolish, or have
found a way of proving a large result by this statement. But, there is of course a catch
here. Finding an explicit description of conv(X) is hard. This will be discussed in the
next section.

To solve a specific instance we of course do not need to know the complete descrip-
tion of conv(X). A good description of conv(X) in the neighborhood of the optimal
solution is often good enough. This inspired several researchers in the seventies and on-
wards to consider classes of inequalities for a certain type of feasible set X and to try to
prove that they are necessary in the description of conv(X ). Such inequalities are called
facet defining. One of the early computational breakthroughs was made by Grétschel
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(Grotschel, 1980) who solved a 120-city traveling salesman problem (he actually solved
the instance in 1977). The traveling salesman problem is the problem of finding a mini-
mum length Hamiltonian cycle, i.e. a cycle visiting each node exactly once, in an undi-
rected graph. Grotschel added linear inequalities that belonged to facet-defining classes
of inequalities for the traveling salesman polyhedron. The largest traveling salesman in-
stance solved at that point was the famous 49-city instance that was solved by Dantzig,
Fulkerson, and Johnson (Dantzig et al., 1954). Dantzig and his colleagues used cutting
planes that they developed by analyzing the specific fractional solutions that they ob-
tained after iteratively adding cutting planes. The cutting planes were neither Gomory
cuts, nor were they proved to be facet defining. Nevertheless, their work is seminal in
the development of integer programming. It is important to keep in mind that a 49-city
traveling salesman instance was huge at that time as it contains more than 1,100 deci-
sion variables. The largest traveling salesman instance solved to date is an instance on
13,509 cities (more than 91 million variables) solved by Applegate, Bixby, Chvital, and
Cook in 1998. For more information on solving the traveling salesman problem I refer to
the home page of William Cook: http://www.caam.rice.edu/ ~bico/. Of course, not
only traveling salesman instances have been tackled, but since it is probably the most
well-known integer programming problem, and since many algorithmic techniques are
compared on traveling salesman instances, this has served as an illustration here. The
book by for instance Nemhauser and Wolsey, together with the survey paper by Marc-
hand et al., will give a good picture of the developments of cutting plane algorithms
during the past decades. What is common for most recent computational successes is
that they combine both Gomory cutting planes and facet defining inequalities with
branch-and-bound based on the LP-relaxation. Branch-and-bound is an enumerative
algorithm that partitions the set of solutions into subsets such that the intersection of
all subsets is empty and such that the union of the subsets is the complete set. Instead
of solving the integer programming problem on the subset, one solves the LP-relaxation
instead. The information from the LP-relaxation is used in order to prune the search
tree, i.e., to avoid looking at all possible solutions.

Before closing this section I just want to give a very brief impression of what can,
and what cannot be done in terms of solving real-life integer programming problems
at present. From the above discussion it is clear that a huge progress has been made in
solving traveling salesman instances to optimality. A similar progress has been made for
many other problems in which the variables may take values 0 or 1 only. Here large-scale
instances arising in for instance frequency assignment in mobile communication, and
network design, such as the problem described in Example 1 can be solved. Problems
arising in machine scheduling are still very difficult to tackle, which is also the case for
many vehicle routing problems. Here one is typically satisfied with a good feasible so-
lution, and the foremost methods for finding such solutions are based on so-called local
search techniques. Problems in which the integer variables are not restricted to the val-
ues 0 or 1 are also more difficult to tackle than the 0-1 problems. What we have learned
over the years is that one needs to study the structure of integer programming problems
carefully and use this structure well in algorithms should there be a hope of solving
large instances. For some problems it is clear that using the LP-relaxation and cutting
planes is not capturing the structure well enough. Some of these problems have been
successfully solved by other techniques such as for instance constraint programming,
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and lattice basis reduction. I will say something briefly about that in Section 4. For a
more thorough overview of “non-standard” techniques for solving integer programming
we refer to the survey of Aardal, Weismantel and Wolsey (1999).

3 Complexity and algorithmic issues

A natural first question for a computer scientist studying integer programming is:
What is the computational complexity of problem (1)? Karp (1972) proved that the
decision version of the 0-1 integer programming problem is NP-complete, and Borosh
and Treybig (1976) proved that the decision version of (1) belongs to NP. Combining
these results implies that the decision version of (1) is NP-complete. This implies that
we cannot expect that there exists a polynomial algorithm for solving (1). Is this a
reason to give up? On the contrary! It is a reason to try harder. Here my view may
be slightly controversial. I think that computer scientists are often too afraid of “NP-
complete” and “NP-hard”. As I mentioned in the previous section, finding an explicit
description of conv(X) is hard in general. More precisely, for general polyhedra X we
cannot hope for an explicit description of conv(X) unless NP = co-NP (Karp and
Papadimitriou, 1980). But this is not a reason to discard algorithms based on cutting
planes. Surprisingly many instances of NP-hard problems can be solved to optimality
if one puts a lot of effort into analyzing the structure of the problem and if one is
careful with the design and implementation of the algorithm. Part of the issue is that
the measure of hardness involves a “worst case”, which is not a very refined measure.
If we want to solve an NP-hard problem to optimality, and believe that P#NP,
then we have to resort to an algorithm with superpolynomial time complexity, so a
large part of the fun of analyzing it is gone. Therefore, in computer science we often
do one of the following things: either we drop the problem altogether, or we develop
a so-called polynomial time approximation algorithm with a performance guarantee.
Such an algorithm finds, for all instances, a feasible solution with value less than or
equal to p times the optimal value, where p is the performance guarantee. I must stress
that T am not at all against the topic of polynomial time approximation algorithms
with a performance guarantee. This area has been exceptionally active during the past
decade, and many beautiful algorithmic ideas have been developed. The only thing I
am slightly critical of is the motivation used by many researchers. In a majority of
papers on the subject one can find a version of the following sentence: “the problem is
NP-hard and therefore it cannot be solved to optimality within reasonable time”. How
many of the researchers actually tried it? Another issue is that the problems for which
polynomial approximation algorithms with performance guarantee have been developed
are typically the integer programming problems that have a very clean structure and
these are in many cases (not all!) the problems that we know relatively well how to solve.
(Machine scheduling problems are important examples of problems that are still very
difficult to solve to optimality.) So, in terms of finding good feasible solutions for difficult
integer programming problems we still need to learn more. I think a better motivation
for studying polynomial time approximation algorithms is that finding one does answer
an interesting mathematical question, that the algorithmic ideas are beautiful, and that
we often learn more of the aspect of hardness of a problem even though one again
needs to be careful with one’s intuition here. One curious problem in this respect is the
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uncapacitated facility location problem, in which we wish to decide on where to set up
facilities, and from which of the open facilities clients belonging to a given set should
be served. All demand of the clients should be satisfied and the total cost of setting
up the facilities and of transporting the goods from the facilities to the clients should
be minimized. The problem is NP-hard, yet it is quite easy to solve to optimality
for most realistic instance sizes. If one makes the assumptions that it is possible to
locate a facility at precisely the points in which a client is located, that the fixed
costs are positive, and that the transportation costs are nonnegative and symmetric,
i.e., going from a to b is as expensive as going from b to a, then one has to work
quite hard to even construct an instance for which the LP-relaxation has a non-integer
solution! Note that the assumptions made above are not unrealistic in a practical
case. The question of finding an approximation algorithm with a constant value of the
performance guarantee p for the uncapacitated facility location problem was posed in
the mid-seventies, and for a long time only a logarithmic worst case guarantee was
known, which some people interpreted as a sign that this problem was really hard.
In 1997 the first polynomial time approximation algorithm with a constant value of p
was found. The best known performance guarantee at present is due to Chudak (1998)
who developed an approximation algorithm with a worst case guarantee of 1.736. 1t
was proved, almost simultaneously, that we cannot expect to find a polynomial time
approximation algorithm with a performance guarantee less than 1.463. Again, both
these results are beautiful and interesting, but from the computational point of view
it is not so clear that a polynomial time approximation algorithm with performance
guarantee is the best algorithm to use if the goal is to find good-quality solutions, since
it has been designed to “get around” the worst case, and not primarily to perform well
on the most typically occurring instances. One detail worth noting in this context is
that many polynomial time approximation algorithms make use of information from
the LP-relaxation. In the proof of the running time, the LP-relaxation is solved by
the ellipsoid algorithm, which is polynomial. It is, however, a well-known fact that the
ellipsoid algorithm is not practical to use, so in an implementation one would use the
simplex algorithm for which no polynomial time version is known. So, strictly speaking,
the resulting implemented algorithm would not be polynomial.

Before turning to the next section I want to mention a few other interesting com-
plexity results. One question that kept intriguing the mathematical programming com-
munity for several years was whether or not the linear programming problem (2) can be
solved in polynomial time. It was shown fairly quickly after complexity theory was de-
veloped (Cook, 1971, Karp, 1972) that LP belongs to NP N co-NP, so it was natural to
think that it was polynomially solvable. Note that membership of LP in co-NP follows
from LP-duality. No pivoting rule of the simplex has been proved to yield a polynomial
time algorithm. The question was answered in 1979 by Khachiyan who proved that the
so-called ellipsoid algorithm runs in polynomial time when applied to the linear pro-
gramming problem. Very rarely has a mathematical result attracted so much publicity
(see Lawler, 1980)! With the computational breakthrough of cutting plane techniques
the following question arose: What is the relation between the optimization problem
(1) and the so-called separation problem? The separation problem based on a family of
polyhedra P is formulated as follows: given a vector z* and a polyhedron P € P, show
that z* € P or give an inequality dTz < dy such that dTz* > dy. Grotschel, Lovédsz and
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Schrijver (1981) showed that the optimization problem and the separation problem are
polynomially equivalent, i.e., the optimization problem is polynomially solvable if and
only if the separation problem is polynomially solvable. Another interesting complexity
question is whether the integer programming problem can be solved in polynomial time
if the number of variables is fixed. This question was answered in the affirmative by
H.W. Lenstra, Jr (1983). It is easy to construct an instance of (1) on which branch-
and-bound performs arbitrarily bad, even the number of variables is just two. Lenstra’s
algorithm was receiving a lot of attention as it introduced concepts from number theory
to the theory of integer programming. An important tool of his algorithm was lattice
basis reduction (Lenstra, Lenstra, Lovéasz, 1982), which has been used successfully in
computational integer programming as well, see the survey by Aardal et al.

4 Discussion

What are the challenging questions in integer programming today? There are many of
them, but I can mention only a few here. The most obvious one is maybe: Is P = NP?
The other questions I want to mention are related to computational integer program-
ming. Solving real-life integer programming problems still poses a serious challenge.
Something that may be viewed as surprising is that local search algorithms often per-
form well on such problems, L.e., the locally optimal solutions produced by these algo-
rithms, if designed and implemented carefully, are often of very good quality, see e.g.
the book edited by Aarts and Lenstra (1997). Why is this the case?

Another interesting question is to find out more about what actually makes a prob-
lem type hard. NP-hardness is a quite coarse measure as discussed in the previous
sections. We have also seen many examples recently of problem instances that are hard
even in very low dimension such as n = 10, so hard and large are by no means strictly
related. When I say “hard” here I mean that these instances belong to NP-hard prob-
lems and that they cannot be solved by cutting planes combined by branch-and-bound
as discussed in Section 2, or by any obvious variant of this approach. Some of the
known instances of this type have been solved by algorithms based on basis reduction,
see Aardal et al., but only some ideas exist as to why these techniques work well here.

What will the future bring in terms of computers and computer models? Will the
whole notion of “hard” disappear once we start computing on quantum computers,
or use plastic instead of silicon, or DN A-chains? Well, the future will show, but I am
convinced that there will always be really hard instances, irrespective of the computer
models, so understanding the problem structure will remain important.
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Abstract
In this paper, a brief introduction to the algorithmic theory of graphs of bounded treewidth
is given.
Introduction

Trees form a well known class of graphs with many interesting properties, also algorithmically.
One of these properties is that many problems, that are computationally hard (e.g., NP-complete)
for general graphs become polynomial time solvable when restricted to trees: often with some form
of dynamic programming. In the past decades, several classes of graphs which have some kind of
‘tree-like structure’ have been proposed. One of the more popular and successful generalisations
of the notion of tree has been the notion of partial k-tree, or, equivalently, graphs with bounded
treewidth.

Treewidth is a measure of graphs. There are several equivalent definitions of the same notion:
the one using tree decompositions is given in Section 2; but one can also define the treewidth of
a graph G as the minimum k, such that G is a partial k-tree (subgraph of a k-tree), or, again
equivalently, such that G is the subgraph of a chordal graph with chromatic number k. An overview
of these, and other equivalent definitions (e.g., in terms of searching games, or with help of graph
composition operations) can be found in [9].

Perhaps the most important reason of the interest in the notion of treewidth amongst re-
searchers in algorithmic graph theory was that the fact that many problems are ‘easy’ for trees
usually generalises to graphs of bounded treewidth: many problems that are hard (e.g., NP-hard)
for arbitrary graphs become polynomial time solvable (and often linear time solvable) on classes
of graphs where a uniform upper bound on the treewidth of the graphs in the class is known. This
is discussed in Section 3. There are several general results, showing for all problems in a large
class of problems that they allow these type of algorithms. In Section 4, we discuss one such type
of general results, based on (monadic second order) logic. In Section 5, results on how to find tree
decompositions are briefly discussed, and some final remarks are given in Section 6.

Treewidth and tree decompositions

The notion of treewidth was introduced by Robertson and Seymour in [18].

Definition 1 A tree decomposition of a graph G = (V,E) is a pair ({X; | i € I},T = (I, F))
with {X; | i € I} a family of subsets of V, one for each node of T, and T a tree such that

e Uier Xi=V.
o for all edges (v,w) € E, there exists ani € I withv € X; and w € X;.
e for alli,j,k € I: if j is on the path from i to k in T, then X;N X, C X;.

The width of a tree decomposition ({X; | i € I},T = (I, F)) is max;cr | X;| — 1. The treewidth of
a graph G is the minimum width over all possible tree decompositions of G.

As discussed earlier, there are several equivalent definitions. It is possible to manipulate a tree
decompositions in some ways to get tree decompositions of some special type. For instance, when
one has a tree decomposition ({X; | i € I},T = (I, F)) of a graph G = (V, E) one can transform
it in time, linear in |I|, into a tree decomposition ({X] | i € I'},T' = (I', F')) of the same width,
where T is a binary tree, and |[I'| = O(|I]), and |I'} = O(|V']), i.e., the tree is of size, at most
linear in size of the tree of the original tree decomposition and linear in the number of vertices of
G. (For details and more similar results, see e.g. the overview in [9)].)
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Solving problems with tree decompositions

An illustrative example of the technique how combinatorial problems can be solved using tree
decompositions of bounded width can be given with help of the 3-COLORING PROBLEM: given a
graph G = (V, E), can we assign each vertex a color from the set C = {red, white, blue}, such that
adjacent vertices are given a different color (called a proper 3-coloring below)? This problem is
well known to be NP-complete, but when a tree decomposition ({X; | i € I},T = (I, F)) of width
at most k is given, then the problem can be solved in time O(3* - |I|). As tree decompositions
can have a number of nodes, linear in the number of vertices of the graph, this is a linear time
algorithm when k is constant. The algorithm given below has a slightly larger constant factor
(about 3%F), but shows the basic principle very well.

As discussed in Section 2, we may assume that T is a binary tree. We choose any node r of
degree at most two as root of T'. For a node i € I, let T; = (I;, F;) be the subtree of T, rooted
at node i. Write V; = Ujeh X, ie., V; is formed by all vertices in the set X; or sets X5, ja
descendant of 1.

Now, write F; as the function, that maps each function ¢ : X; = C to either true or false, with
Fi(c) = true, if and only if there is a coloring ¢’ : V; = C with adjacent vertices always different
colors, such that for all v € X;, ¢(v) = ¢'(v), or, in other words, ¢ can be extended to a proper
3-coloring of G;.

Now, for leaves i, the function F; can easily be tabulated: F;(c) is true, if and only if ¢ is
a proper 3-coloring. Essential is however, that for other nodes i, F; can be tabulated when the
tables, giving these functions for the children of i are known. Suppose i has children j; and J2.
The definition of tree decomposition makes that a vertex v in G 4. can only be adjacent to a vertex
w € Gj,, if v € X; or w € X;. Using this, one can show that for a function ¢ : X; — C, we have
F;(c), if and only if no two adjacent vertices are given the same color by function ¢, and there exist
functions ¢1 : Xj, — C, ca : Xj, = C with Fj, (c1) = true, Fj,(c2) = true; and for v € X; N Xt
c(v) = e1(v), v € X; N Xj,: c(v) = c2(v). This property can be checked in O(1) time for each c,
given tables for the values of Fj, and Fj,, assuming the width k is a constant.

Thus, we can compute tables for all functions F;, i € I, in a bottom-up way in the tree: starting
at leaves, and computing a table for a node after the tables for its children are done. When we
have the table of the root node, we know whether G is 3-colorable: then there is at least one
function ¢ : X, — C with F,.(c) = true.

Another way of viewing this algorithm is that we compute for each i a set of equivalence classes
of partial solutions: two proper 3-colorings ¢; and c; of G; are equivalent when for all v € X,
ci(v) = c2(v). If ¢; and c; are equivalent, then we can extend ¢; to a proper 3-coloring of G
by assigning colors to vertices in V — V;, if and only if ¢; can similarly be extended to a proper
3-coloring of G. Thus, what we do is tabulate all non-empty equivalence classes for each node of
the tree decomposition.

This method can be used for many combinatorial problems. (See [8, 6] for introductions with
many references.)

One recent example of a successful application of the theory can be found in {15], where Koster
uses tree decompositions to solve specific instances of the MINIMUM INTERFERENCE FREQUENCY
ASSIGNMENT PROBLEM, a problem arising from the need to assign frequencies to radio transmit-
ters, which can be seen as a generalisation of graph coloring.

Similar algorithms are also used in other fields, e.g., for doing otherwise intractable computa-
tions on Bayesian belief networks (see e.g., [19, 17].)

Note that in the algorithm for the 3-COLORING PROBLEM described above, the information that
is computed for each node is of constant size. In that case, the dynamic programming algorithm
can also be viewed as a tree automaton. This is perhaps easier illustrated by first looking at the
case that we have path-decompositions (tree decompositions where T has no nodes of degree more
than two, i.e., where T is a path). In that case, we compute some information for each node, in
order; the information that we compute depends only on what is computed for the previous node,
and the structure of node i (e.g., the subgraph of G induced by X;.) Thus, this algorithm can be
seen as a finite state automaton - the structural information of nodes corresponds to the symbols
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of the string; the computed information of nodes to the state the machine is in, etc. For trees
instead of paths, the situation is similar, but now we have a finite state tree automaton. (See [1].)
Using the terminology of Courcelle, we call problems that allow such a ‘tree automaton’ (dynamic
programming algorithm with a constant number of bits per node) recognisable.

Monadic second order logic and more

There are several results that state for a large class of combinatorial problems that each of the
problems in the class can be solved in linear time, (or polynomial time) when restricted to graphs
of bounded treewidth.

Perhaps the most successful of these kinds of results are the results on problems, expressible
in Monadic Second Order Logic, or an extension of this class. This work was started by Courcelle
(see e.g., [13]), and later several authors found extensions of his result. Independently, but perhaps
somewhat later, a similar result was found by Borie et. al [11]. See also [4].

A problem is expressible in Monadic Second Order Logic, if it can be formulated using the
following language constructions: quantification over vertices, sets of vertices, edges, sets of edges,
set membership of vertices, set membership of edges, adjacency tests (are these vertices adjacent,
is this vertex incident to this edge?), and logic operations (and, or, etc.) For example, the 3-
COLORING PROBLEM can be expressed as follows:

W, CV: L CV:TCV:(WweV:veViVueVaVo e VA (W €
VivweV:weViAweV, - not (v,w) € EYA(v € Vo Aw € V3 = not
(v,w) € EYA(v€VaAw € V3 - not (v,w) € E))

Courcelle [13] showed that every graph problem, expressible in Monadic Second Order Logic
can be solved in linear time, when the input graph is given with a tree decomposition of width
bounded by a constant.

There are extensions of the language that allow to express optimisation problems which also
allow linear time algorithms for graphs of bounded treewidth. E.g., one can allow to ask for the
minimum or maximum size set of vertices or edges such that a MSOL-expressible property holds.
The MAXIMUM INDEPENDENT SET PROBLEM (find a set of non-adjacent vertices in a given graph
G that is as large as possible) can be expressed as follows:

maxwcy |[W|: Yo eV :VweV:(veWAweW)— (not (v,w) € E)

An important extension of Monadic Second Order Logic is Counting Monadic Second Order
Logic. Let m,,, be the predicate on sets for which m, ,(Z) = true, if and only if |Z| mod r = s.
Expressions in Counting Monadic Second Order Logic can use all constructions of MSOL, and
predicates of the form m, (W) or m, ,(F) on vertex set or edge set variables.

Call a property definable, when it can be expressed in CMSOL. Courcelle conjectured that
a problem is definable, if and only if it is recognisable. This conjecture was recently proved by
Lapoire [16].

LaPoire’s theorem can be seen as a generalisation of the result by Biichi from 1960, which
states that the regular languages are precise the languages definable by a formula in Monadic
Second Order Logic [12].

Finding tree decompositions

For the algorithms discussed in the previous two sections, it is required that one has a tree
decomposition of the graph given of bounded width. For some special classes of graphs, (e.g.,
outerplanar graphs), such a tree decomposition can be constructed easily, but in general, this
problem is hard. In general, it is NP-hard to determine the treewidth of a given graph [2], but
many special cases can be solved in polynomial time. (Overviews of several such results can be
found in (8, 6].)

An important case is the ‘fixed parameter case’: for constants k, there is a linear time algorithm
that given a graph, determines if the graph has treewidth at most k, and if so, finds a tree
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decomposition of width at most k [7]. The algorithm however suffers from a high constant factor.
Few experimental work has so far been done on finding ‘good tree decompositions’, but see e.g.
[5]. A good introduction to fixed parameter complexity is [14].

Final remarks

It is also possible to solve problems on graphs of bounded treewidth by graph reduction techniques.
Arnborg et al. [3] showed that all recognisable problems can be solved in linear time (but more
than linear space) on graphs of bounded treewidth using reduction. There is no need to first find
a tree decomposition. The algorithm works by repeatedly modifying the graph into a smaller,
equivalent graph. These results were generalised in [10].

Several aspects of the algorithmic work on graphs of bounded treewidth were not discussed
in this short paper. For instance, a rather interesting result is that of Robertson and Seymour,
whose deep results on graph minors imply that every minor closed class of graphs has a polynomial
time recognition algorithm; if in addition, the class does not contain all planar graphs, then tree
decompositions can be used to (non-constructively) show the existence of a linear time recognition
algorithm. (See e.g. [14].)
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Abstract

This note discusses an assertion language for describing properties of configurations of
objects and its application to reasoning about aliasing and object creation.

Introduction

The execution of an object-oriented brogram gives rise to a dynamic configuration of objects.
Characteristic of such a configuration is that ob jects can be created at arbitrary points during the
execution of a program, and references to ob jects, ‘pointers’, can be stored in variables and passed
around, for example, as parameters in messages. This implies that complicated and dynamically
evolving structures of references between objects can occuyr.,

The problem addressed in this note is an appropriate assertion language for describing prop-
erties of these dynamic configurations. An important requirement is that the abstraction level of
the assertion language should coincide with that of the programming language. In more detail,
this means the following:

® The only operations on “pointers” (references to objects) are testing for equality and deref-
erencing (looking at the value of an instance variable of the referenced object).

® Furthermore, in a given configuration, it is only possible to mention the objects that exist
in that configuration. Ob Jjects that do not (yet) exist never play a role. :

In section 3 it is shown how to model assignments which involve aliasing and object-creation
logically by substitutions which, when applied to a given postcondition, yield the corresponding
weakest precondition.

The assertion language

In

objects. An object itself is an entity containing data and procedures (methods) acting on these
data. The data are stored in variables, which come in two kinds: instance variables, whose lifetime
is the same as that of the object they belong to, and temporary variables, which are local to a
method and last as long as the method is active. Variables can contain references to other objects
in the system (or even the object under consideration itself). The value of g variable can be
changed by an assignment.

Without loss of generality, we may assume that the variables of an object cannot be accessed
directly by other objects. The only way for objects to interact is by sending messages to each
other. If an object sends a message, it specifies the receiver by means of one of its variables, a
method name, and possibly some parameters. Then control is transferred from the sender object
to the receiver. This receiver then executes the specified method, using the parameters in the
message. Note that this method can, of course, access the instance variables of the receiver. The
method returns a result which is sent back to the sender. Then control is transferred back to the
sender which resumes itg activities, possibly using this result.

27



Given an arbitrary (infinite) set O of object identities, with typical element o, a configuration
of objects can be formally defined as a partial function ¢ on O such that for every o € O, 0(0), if
defined, denotes the internal state of object o. The internal state of an object assigns a value to
each of its variables. This value may be of some predefined data type like that of the integers or
booleans, or it is an element of the set O of object identities. An object o € O ezists in o if 0(0)
is defined. We restrict to configurations which are consistent in the following sense. The variables
of existing objects refer to existing objects. Formally, a configuration o is consistent if for every
existing object o, o(0)(z) € O implies that o(0)(z) is an element of the domain of o.

We assume given an object-oriented programming language with the following typical elements
of the set of expressions without side-effects (we omit the typing information).

e::=self|ni||n|true|fa|se|z|el+eg|

Such an expression e is evaluated by an object o in a configuration of objects 0. The result of
this evaluation is denoted by Val(e)(0,0), with o an object existing in 0. It is formally defined
by a simple induction on the structure of e. For example, Val(self)(o,0) = o, e, the expression
self denotes the object o itself, and Val(z)(o,0) = o(0)(z). In the grammar above, 7 denotes an
integer constant, the arithmetical operation of addition is denoted by +, and true and false denote
the standard boolean values. Finally, the expression nil stands for ‘undefined’.

One element of the assertion language for describing properties of configurations of objects will
be the introduction of logical variables. These variables may not occur in the program, but only
in the assertion language. Therefore we are always sure that the value of a logical variable can
never be changed by a statement. Logical variables are used to express the constancy of certain
expressions (for example in a proof rule for message passing, see [4]). Logical variables also serve
as bound variables for quantifiers.

In general, the set of expressions in the assertion language will be larger than the set of
programming language expressions not only because it contains logical variables, but also because
we include conditional expressions in the assertion language. These conditional expressions will
be used for the analysis of the phenomenon of aliasing which arises because of the presence of a
dereferencing operator.

In two respects the assertion language differs from the usual first-order predicate logic: Firstly,
the range of quantifiers is limited to the ezisting objects in the configuration under consideration.
For the classes different from the predefined ones like that of the integers and booleans this
restriction means that we cannot talk about objects that have not yet been created, even if they
could be created in the future. This is done in order to satisfy the requirements stated in the
introduction. Because of this the range of the quantifiers can be different for different states.
More in particular, a programming statement can change the truth of an assertion even if none
of the program variables accessed by the statement occurs in the assertion, simply by creating
an object and thereby changing the range of a quantifier. (The idea of restricting the range of
quantifiers was inspired by [8].)

Secondly, in order to strengthen the expressiveness of the logic, it is augmented with quan-
tification over finite sequences of objects. It is quite clear that this is necessary, because simple
first-order logic is not able to express certain interesting properties.

We give the following typical elements of the set logical expressions (we omit the typing infor-
mation):

lu:=el|z|lz|iflothen I, else I fi

As described above, the expression e comes from the given programming language. It is
evaluated by the object which is denoted by self. The variable z is a logical variable. We can now
also look at the value of an instance variable of the referenced object: the expression [.z refers to
the local value of the instance variable £ of the object denoted by [. So we assume that z in this
context is an instance variable because temporary variables here do not make sense. Moreover, as
explained above, we can write conditional expressions.

Formally, an expression 1 is evaluated by an object o in a configuration of objects o and a
logical environment w which assigns values to the logical variables. The result of this evaluation is
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denoted by Val(l)(w,o0,0). It is defined by a simple induction on the structure of . For example,
Val(z)(w, 0,0) = w(z) and Val(l.z)(w, 0,0) = 0(0')(x), where o' = Val(l)(w, 0, o).

In order to reason about sequences we assume the presence of notations to express, for example,
the length of a sequence (denoted by [1]) and the selection of an element of a sequence (denoted
by I(n), where n is an integer expression).

The set of assertions, with typical element P, is defined by:

Pu=l|PAQ|~-P|3zP

Here [ denotes a boolean expression.

As already explained above, a formula 3z P, with z ranging over objects, states that P holds
for some ezisting object. A formula 3zP, with 2z of a sequence type, states the existence of a
sequence of existing objects.

Formally, an assertion P is evaluated by an object 0 in a configuration ¢ and a logical en-
vironment w. We denote by o, o, w F P that P is true when evaluated by the object o in the
configuration o and the logical environment w. It is defined by a straightforward induction on the
structure of P. For example, we have that 0,0,w = 3zP if and only if there exists an element o'
in the domain of ¢ such that o, o,w{0'/z} = P (assuming that z ranges over objects). Here the
logical environment w{o'/z} results from w by assigning o’ to 2.

As an example, the following formula states that the object denoted by the logical variable v
can be reached from the object denoted by the logical variable u by a finite sequence of objects
which are linked by the instance variable z.

Elz(z(l) =uAz(]z]) =vAVRn (0<nAn< |z] = 2(n).2 = z(n + 1)))

Aliasing and object-creation

In this section we show how we can model aliasing and object-creation in the assertion language
by means of substitutions.
Aliasing
Let z be an instance variable of some ob ject and e be an expression without side-effect (of a given
object-oriented programming language). The execution of an assignment r := e by an object
consists of assigning the value of e to its variable z. The corresponding substitution operation
[e/z] has to account for possible aliases of the variable z, namely, expressions of the form [.z: it
is possible that, after substitution, ! refers to the object itself (i.e. the object denoted by self), so
that l.z is the same variable as z and should be substituted by e. It is also possible that, after
substitution, I does not refer to the object itself, and in this case no substitution should take place.
Since we cannot decide between these possibilities by the form of the expression only, a conditional
expression is constructed which decides “dynamically”. Note that an assignment z := e, with z
a temporary variable, does not give rise to aliasing (because no other object can access z in the
assertion language). Consequently, in this case the usual notion of substitution suffices.

We have the following main cases of the substitution operation [e/z]:

(L.z)le/z] = l[e/z] = self then e else lle/z).x fi
(yle/z] = (le/z])y

(Syntactic identity is denoted by =.) In the second case it is assumed that z and y are distinct
instance variables. The definition is extended to assertions other than logical expressions in the
standard way.

As a simple example, applying the substitution (1/z] to the assertion y.z = 0 results in the
assertion if y = self then 1 else y.z fi = 0. This assertion clearly is logically equivalent to y #
self Ay.z =0.

The following theorem states that Ple/z] is in fact the weakest precondition of the assertion P
(with respect to the assignment z ;= e).
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Theorem 2 We have that
0,0,w = Ple/z] if and only if 0,0',w = P,

where o' results from o by assigning to the variable = of object o the value Val(e)(o,a), i.e.,
o'(0)(z) = Val(e)(0,0) (and in all other cases o agrees with o').

Object creation

Next we consider the creation of objects. We want to define the substitution [new/z] which
models the creation of a new object referred to by z. This substitution should model logically
the assignment z := new. Execution of an assignment z := new consists of the creation of a new
object and assigning a reference to this object to z.

As with the usual notions of substitution we want the expression after substitution to have the
same meaning before the assignment as the unsubstituted expression has after the assignment.
However, in the case of the creation of a new object, there are expressions for which this is not
possible, because they refer to the new object and there is no expression that could refer to that
object before its creation, because it does not exist yet. Therefore the result of the substitution
must be left undefined in some cases.

However we are able to carry out the substitution in case of assertions, assuming, without loss
of expressiveness, that in the assertion language the operations on sequences are limited to ||, i.e.
the length of the sequence [, and I(n), i.e. the operation which yields the nth element of I. The
idea behind this is that in an assertion a temporary variable z referring to the new object can
essentially occur only in a context where either one of its instance variables is referenced, or it is
compared for equality with another expression. In both of these cases we can predict the outcome
without having to refer to the new object. The case of an assignment z := new, with = an instance
variable, then can be logically modeled by the composition of the substitutions [y/z] and [new/y],
where y is some (fresh) temporary variable. Note that the substitution [y/z] as defined above
renames all possible aliases of the variable z into y.

Here are the main cases of the formal definition of the substitution [new/z], with = a temporary
variable, for logical expressions. As already explained above the result of the substitution [new/z]
is undefined for the expression z. Since the (instance) variables of a newly created object are
initialized to nil we have

(z.y)[new/z] = nil

If neither I, nor Iy is z or a conditional expression they cannot refer to the newly created object

and we have
: (z1 = lz)[new/a:] = (ll[new/a:]) = (lg[new/z])

If either [, is = and I3 is neither z nor a conditional expression (or vice versa) we have that after
the substitution operation [; and l; cannot denote the same object (because one of them refers to
the newly created object while the other one refers to an already existing object):

(ll = 12) [new/z] = false
On the other hand if both the expressions I; and I equal  we obviously have
(l1 = 12) [new/z] = true

We have that [[new/z] is defined for boolean expressions I.
Let z be a logical variable ranging over objects. The changing scope of a bound occurrence of
the variable z induced by the creation of a new object is captured as follows.

(3z P)[new/z] = (3z(P[new/z))) V (P[z/z][new/xz]).

The idea of the application of [new/z] to (3z P) is that the first disjunct 3z(P[new/z]) represents
the case that P holds for an ‘old’ object (i.e. which exists already before the creation of the new
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object) whereas the second disjunct Plz/z][new/z] represents the case that the new object itself
satisfies P. Since a logical variable does not have aliases, the substitution [z/2] consists of simply
replacing every occurrence of z by . Similarly, it is easy to derive the following clause for universal
quantification.

(Vz P)[new/z] = (Vz(P[new/z])) A (Plz/z|[new/x]).

As a simple exampe, we have

il

(Vz(z =2 Vself = z))[new/x]

Vz ((z = 2V self = 2)[new/a]) A (z = = V self = g)[new/a] =

Vz(false V self = 2) A (true V false)
where the last assertion obviously reduces to Vz(self = z). This assertion states that self is the only
object which exists, which indeed is the weakest precondition of the assertion Vz(z = z V self = z)
with respect to z := new.

Next we consider the case of an occurrence of a bound variable z which ranges over sequences
of objects. Let 2’ be a (fresh) logical variable ranging over sequences of boolean values. The
variables z and 2’ together will code a sequence of objects possibly including the newly created
object: at the places where 2’ yields true the value of the coded sequence is the newly created
object. Where 2’ yields false the value of the coded sequence is the same as the value of z. This
encoding is described by the substitution operation [2', /2], the main characteristic cases of which
are:

z[z',u/z] is undefined

l2l)l'u/z) =l
z(l)) [z',z/z] =if 2/(I') then z else z(I') fi, where I’ = l[2',z/2].

This substitution operation [2',z/z] is defined for boolean expressions.
Given this encoding we can now define

(32 P)[new/z] = 3z 32’ (2| = || A (Pl2', z/2][new/x]))
As an example, consider the following assertion
3z (lzl =nAVudi (2() = u)),
where z ranges over sequences of objects and u ranges over objects themselves. This assertion
states that there exist at most n objects. An application of the substitution [z’ ,Z/z] to the
assertion |z| = n A Vu3i (2(4) = u) results in the assertion

|zl =n A Vu3i (if 2'(i) then z else 2(i) fi = u).

In order to apply the substitution [new/z] to this assertion we first eliminate the conditional
expression. We obtain

lz| = n A Vu3i (z’(i) 2T =uA-2'(i) > 2(i) = u)

(assuming that —, —, A lists these operators in decreasing binding priority). An application of
[new/z] to this latter assertion results in the following:

|2] = n A Vudi (z'(i) — false A -2'(3) - 2(3) = u) AZi (z'(i) = true A —=2'(i) - faIse)
This assertion is clearly logically equivalent to the assertion

2| = n A VuZi (—-z’(i) Az(5) = u) A 3i 2 ()
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Summarizing the above we obtain as final result the assertion
3z3z'(|z| = 2| Alz| = n AVuTi (-2 (B) A z(i) = u) A i z'(i))
This latter assertion clearly is logically equivalent to the assertion
3z (|z| =n—1AVauZi (2() = u))

which indeed corresponds with our intuition of the weakest precondition of the assertion which
states that there exists at most n objects after the creation of a new object.

The following theorem states that P[new/z] in general calculates the weakest precondition of
P (with respect to the assignment & := new).

Theorem 3 We have
0,0,w = P[new/z] if and only if 0,0',w = P,

where o' results from o by extending the domain of o with a new object o, initializing its variables
to nil, and assigning o’ to the variable T of the object o.

Conclusion

The basic ideas underlying the assertion language discussed in this note have been applied in
various Hoare logics for reasoning about the correctness of programming constructs in an object-
oriented context, like message passing ([4]), parallelism ([2]), and, synchronous ({1, 3]) and asyn-
chronous ([5]) communication between objects.

Moreover it is expected that this assertion language also provides an appropriate basis for
specifying such high-level object-oriented programming mechanisms like subtyping, abstract types
and inheritance.

Furure work concerns the use of assertions as annotations of object-oriented programs and
the construction of a compiler which translates these annotations into corresponding verification
conditions which then can be checked semi-automatically by a proof-checker like PVS ([7]).

Acknowledgement This note summarizes joint work with P. America.
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Abstract

We present a process algebra that allows one to specify concurrent systems with stochastic
functionality in a compositional way. The semantics of this process algebra is given in terms of
stochastic automata, an extension of automata with clocks that are basically random variables
of a continuous or discrete nature. We show that the well-known performance model of
generalised semi-Markov processes ( GSMPs) defines a proper subset of stochastic automata
and give some examples that show the potential benefits of our approach.

Keywords: GSMP, process algebra, discrete-event simulation, compositionality, equational
reasoning

1 Introduction

In discrete-event simulation the behaviour of a system as it evolves in time is described in terms
of a simulation model. Simulation modelling is usually a time-consuming task and is mainly based
on human ingenuity and experience. In addition, the difficulty of the design of a simulation model
rapidly grows with the increasing magnitude and complexity of the system itself. To ease the
description of simulation models, dedicated simulation languages have been developed, such as
Demos, GPSS and Simscript, most of which are process-oriented.

State changes in discrete-event simulation models take place at discrete points in time, whereas
the time of occurrence of activities is controlled stochastically, i.e. by means of random variables.
A mathematical framework for the study of these models—known as stochastic discrete-event
systems—is given by Glynn [8]. He presents a generalised semi-Markov process (GSMP) theory
for such systems.

In this paper we describe a high-level specification language for stochastic discrete-event sys-
tems, in particular GSMPs. Our specification language is based on process algebra. In process
algebras, like ACP, CCS, CSP and LOTOS, a concurrent system is syntactically represented using
powerful composition operators which facilitate the development of well-structured specifications.
The algebraic nature of the language allows to reason about specifications in an equational way,
thus allowing transformation and verification. Traditionally, process algebras focussed on the
specification and analysis of qualitative system properties, but in the last decade the interest in
extensions with quantitative information has grown significantly. This integration facilitates the
analysis of qualitative and quantitative properties in a single framework.

We use an extension of process algebra in which the time of occurrence of actions, the most
primitive notions of activity in process algebra, is determined by a continuous or discrete probabil-
ity distribution of arbitrary nature. To give a formal semantics to our language SPADES (Stochas-
tic Process Algebra for Discrete-Event Simulation, symbolised by () we introduce the concept
of stochastic automata, an extension of labelled automata with clocks, that can be seen as a
stochastic variant of timed automata by Alur & Dill [1]. We argue that GSMPs are a subclass of
stochastic automata and give a stochastic extension of the expansion law known from (untimed)
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process algebra. This law is of central importance for the verification and correctness-preserving
transformation of expressions in Q and, thus of GSMPs.

2 Motivation

A simple queueing system. Consider a queueing system in which jobs arrive and wait until
they are executed by a single server. An infinite population of jobs is assumed. Jobs arrive with
an inter-arrival time that is determined by a continuous probability distribution F while the delay
between the processing of two successive Jobs is controlled by distribution H. This system is
known as a G/G/1/oo-queue, where G stands for general distribution of the arrival and service
process, respectively, 1 indicates the number of servers, and oo denotes the buffer capacity.

A GSMP description. A typical GSMP description of such queueing system is defined in the
following way. The basic ingredients are states and events. To each state z a (non-empty) set
of active events F(z) is associated denoting the set of events that can cause transitions out of
z. In our example, we let the state space be IN x { 0,1}, where the first component of a state
indicates the number of jobs that are currently in the system, and the second component indicates
the system status (1 = ‘a job just arrived’, and 0 = ‘a job has just been processed’). Initial state
is (0,1). In each state, possible events are the arrival of a job (denoted a) and the completion of
a job (denoted ¢). In the initial state no job completion is possible. Thus, E(i,7) = {aiy1,cip1 }
and £(0,1) = {a; }. The arrival of a job causes a transition from state (4,0) or from (4, 1) to state
(i+1,1). Completion of a job leads to a transition from (i+1,0) or (341,1) to state (,0).

To each event e € E(z) a clock ¢, is associated that indicates the amount of time until
expiration. Clocks are initialised by probability distribution functions and run backwards. In
each state the active event e* with minimal clock value is selected for execution. The values of
the events in 2/, the successor state of 2’ on executing e*, are determined as follows. Clocks of
events in E(z) — {e* } are decreased by the value of Ce+. The clock of any newly active event e in
E(2') — (E(z) ~ {e*}) is set according to the clock-setting distribution F(c.). All other clocks in
2’ equal oco. Due to the conditions imposed on clock-setting distributions, the event e* in GSMPs
is always uniquely determined 8].

In our example, clocks are initialised as follows. On entering state (4,1) the clock of the next
arrival a;, is initialised according to distribution F, the job inter-arrival time. On entering state
(1,0) with i # 0 the clock of the next possible job completion ¢;,; is initialised according to
distribution H, the service delay. The clock for ¢1 1s set in the same way in state (1, 1).

A compositional approach. Although using this description the dynamics of our example
GSMP can be determined, it is in absence of any further explanation not easy to understand.
This is basically due to the fact that the individual system components, like arrival and server
processes, are hard to recognise from the overall system structure. This problem becomes more
apparent if we consider GSMPs modelling systems of more realistic magnitude. We say that the
specification lacks compositionality. The idea that we shall pursue here is to specify GSMPs in a
compositional way.

In process algebra the specification of our queueing system can be obtained in a hierarchical
manner, starting from the specifications of the individual components. If we let a;p denote a
process that immediately can perform an action ¢ and then behaves like process p, and p+gq
denote the process that behaves either like p or like g, then a buffer of infinite capacity can be
specified by the set of processes:

Queue, = a: Queue,
ueue; = a; Queue, , + b; Queue,; for 1 > 0
i+1 i+2 1

where the index indicates the number of jobs in the buffer. Similarly to GSMPs, clocks can be
used to model probabilistic delays. Let C be a finite set of clocks. Using the primitives C — p, the
process that after expiration of all clocks in €' behaves like p, and {C}p, the process that behaves
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like p after any clock z in C is initialised according to some indicated distribution, we obtain for
the arrival and server processes:

Arrival = {zp[}{zr} — a;Arrival

Server = b; {yul{ym} — c;Server

In the Arrival process clock x is initialised and starts counting down. Once it has reached the
value 0, it expires and action a is enabled. The overall system is described by:

System = (Arrival||g Server) || (4,5} Queueg

Here, || stands for parallel composition. In process pllag, where A is a set of actions, p and
g perform actions autonomously, but actions in A should be performed by both. The resulting
specification of the G/G/1/cc system closely resembles the structure of the system itself, is easy
to understand, and readily modifiable (for instance, to a queue with finite capacity, or a system
in which the service rate depends on the number of waiting jobs).

The formal meaning of a process algebra term is defined in a mathematical model. By defining
an appropriate equivalence relation on this model one is able to formally compare and transform
(e.g. simplify) specifications. If, in addition, this relation is a congruence, then such transformation
can be carried out component-wise. An equivalence relation is a congruence if for any term
a sub-term may be replaced by an equivalent sub-term and an equivalent term results. This
compositional transformation reduces the complexity significantly. Finally, due to the algebraic
nature of the formalism it is possible to define equational rules on the syntax that allow to perform
transformation and simplification at a purely syntactical level, without any reasoning in semantical
terms.

3 Stochastic automata and GSMPs

Stochastic automata. The semantics of our process algebra is defined in terms of stochastic
automata. (For a formal interpretation of such automata in terms of measure theory, see [6].)
This model is strongly related to GSMPs and incorporates, apart from the necessary ingredi-
ents to model GSMPs, the possibility of specifying non-determinism. Non-determinism appears
if two transitions become enabled simultaneously. This concept is usually absent in stochastic
discrete-event systems, but has been widely accepted in the computer science community for the
purpose of under-specification in a step-wise design methodology [13]. For simulation purposes, the
non-determinism can be resolved using so-called adversaries that schedule the different branches
according to some discrete probability distribution [17]. In this way, a mechanism is obtained
similar to the probabilistic branching in GSMPs (see also later on).

Definition 1. A stochastic automaton is a tuple (S, so,C, A,—, k, F') where: S is a non-empty
set of locations with so € S being the initial location, C is a set of clocks, A is a set of actions,
—> C 8 x (A x P5,(C)) x S is the set of edges, k: S — §26.(C) is the clock-setting function,
and F : C — (IR — [0,1]) is the clock-distribution function such that F(z)(t) =0fort < 0.

We denote (s,a,C,8') € —» by s 2% & use z and y to denote clocks, and abbreviate F(z)
by F,. To each location s a finite set of clocks «(s) is associated. As soon as location s is entered
any clock z in this set is initialised according to its probability distribution function F;. Once
initialised, the clocks start counting down, all with the same rate. A clock expires if it has reached
the value 0. The occurrence of an action is controlled by the expiration of clocks. Thus, whenever

s 2% ¢ and the system is in location s, action a can happen as soon as all clocks in the set C
have expired. The next location will then be s'. :

Ezample 2. The stochastic automaton that corresponds to the G /G /1/o0 queue from Section 2
is depicted in Figure 1. Here, we represent a location s as a circle containing the clocks that are
to be set in s, and denote edges by arrows. The initial location is represented by a circle equipped
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with a small ingoing arrow (leftmost circle in second row). Notice that after an a-action always
a location is reached in which clock z is set (according to distribution F'), and after a c-action
always clock y is set (apart from the first location in the upper row) according to H. Clock
thus controls the job inter-arrival time while y controls the service delay. The locations in the
upper row represent the states (i,0) whereas the lower row represents the states (,1). In state
(0,0) there are no jobs in the system and a completion can only happen after a job arrives first.

Therefore, in this state clock y is not set, but only after a job arrival (in state (1,1)). O
CY C, Y
LG e
¢y Gy
a,x a,zt
—
a,zr a,z a,x a,x

Figure 1: Stoch. automaton of a G/G/1/oco-system

Generalised semi-Markov processes. In Section 2 we have seen a flavour of GSMPs. Actually
we will consider a (large) subclass of GSMPs. The main restriction is that the next state is uniquely
determined by the present state and the triggered event. In general GSMPs the next state is chosen
probabilistically from a set of possible next states. In addition, we assign to each clock a fixed
distribution function whereas in general GSMPs such distribution may depend on the history of
the system. This is not a severe restriction since one can model each history of a general GSMP
by a sequence of sufficiently many events such that each such event marks a relevant point in
history. The class of GSMPs with history-independent distribution functions is known as time-
homogeneous [8]. Finally, sometimes clocks are allowed to have different rates whereas in our
case all clocks proceed with the same speed. Different rates are not very usual in simulation, and
moreover, under certain conditions, such “multi-rated” GSMPs can be represented by GSMPs
where all clock rates equal 1.

The notion of GSMPs that we consider is defined as follows, where it is assumed that initial
state zp has a single active event eg. C is a set of clocks. The dynamics of a GSMP in the following
sense is as described in Section 2.

Definition 3. (Z,z9,E,eg, E,C, N, F) is a GSMP with Z, a non-empty set of states with zg € Z,
E, a non-empty set of events with eg € E, B : Z — £4n(E), the event-assignment function
with E(z) # @ for all 2 € Z and E(z) = {eo}, C : E — C, the clock-assignment function,
N : Z x E — Z, the next-state function, and F : ¢ — (IR — [0, 1)), the distribution assignment
function, such that F(z)(0) = 0.

GSMPs versus stochastic automata. The relation between stochastic automata and GSMPs
(in the above sense) is shown by defining a mapping from GSMPs onto stochastic automata. The
existence of this mapping indicates that GSMPs are properly included in stochastic automata. We
have proven the correctness of the mapping in the sense that the underlying probabilistic transition
systems (that are based on Borel spaces) of a GSMP and its associated stochastic automaton are
probabilistically bisimilar [6].

The basic idea of the mapping is to introduce a location as a pair (z, E) where z is a state of
the GSMP and E is the set of events that are already active. The initial location is (N (zo, o), D).
For each active event in state z, there is an outgoing edge from any location (z, E). This edge is
labelled with event e (i.e. the action) and the set of clocks {C(e)}. So, events are considered as
actions and active events of z are

E(z) = | Jle| (=, B) 1<y,

Definition 4. The associated stochastic automaton of GSMP G = (Z, z0,E,eq, E,C, N, F) is
defined by S = Z x #4,(E) with so = (N(20,€0),2), A=E,C = {C(e) | e € E}, k(2,E) =
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{C(e) | e€ E(z) — E}, and F is the same as for . —» is defined by the rule

» ‘ e € E(z) ’
(2, E) 21U (N(z,¢), B(z) - {e}) .

Due to the fact that F(z) # @ for any z, the condition e € E(z)-is always satisfied. There are
many locations (z, E) € S that are unreachable via —s . All reachable locations have the form
(N(z,e), E(z) — {e}) for every (reachable) z € Z and e € E(z). Remark that for 2/ = N(z,e) we
have £(2', E(z) — {e}) = {C(e') | ¢ € E(2") — (E(z) — {e}) }, the set of clocks for all newly active
events in z’. : 8 '

As argued before, stochastic automata are more expressive than GSMPs, since stochastic
automata do allow non-determinism (two outgoing edges that are enabled at the same time),
whereas GSMPs do not. In addition, in the stochastic automaton model clocks may be initialised
by arbitrary dist‘ributiohsﬁincluding discrete distribution functions—without any restriction. In
GSMPs it is required that in any set of active events there is at most one clock z such that F,(t)
is not continuous as a function of ¢ [8)]. !

4 The stochastic process algebra

Syntax. Let A be a set of actions, V a set of process variables, and C -a set of clocks with
(z,G) € C for r a clock name and G an arbitrary probability distribution function. We abbreviate
(z,G) by z¢. : ' '

Definition 5. The syhtax of ) is defined by:

p:=0 l a;p;' Cr—p , p+p | {Clp l pHAPlP[f]I X.

where C' C C is finite, a € A, ACA, f: A — A, and X € V. A recursive specification E is a set
of recursive equations of the form X ='p for each X € V, where PEQ. ‘

Besides the operations used in Section 2 the language incorporates the basic process 0, the
process that cannot perform any action, and ‘the renaming operation p[ f], a process that behaves
like p except that actions are renamed by function f. A few words on p + ¢ are in order. p + ¢
behaves either as p or g, but not both. At execution the fastest process, i.¢. the process that is
enabled first, is selected. This is known as the race condition. If this fastest process is not uniquely
determined, a non-deterministic selection among the fastest processes is made: : ,

Semantics. To associate a stochastic antomaton SA(p) to a given term p in the language, we
define the different components of SA(p)!. In order t6 define the automaton associated to a
parallel composition, we introduce the additional operation ck. c_k(p) is a process that behaves like
p except that no clock is set at the very beginning. As usual in structured operational semantics,
a location corresponds to a term. Thus, the set of locations equals Q U {ck}. The clotk setting
function & is defined by induction on the structure of expression: k(0) = k(a;p) = r(ck(p)) = 2,
K(C = p) = w(plf]) = K(p), k(P +q) = k(p|lag) = K(p) U w(q), ~({Chp) = C U x{p) and
#(X) = k(p) for X = p. The set of edges — between locations is defined as the smallest relation
satisfying the rules in Table 1. The function F is defined by F (xg) = G for each clock z in p.
The other components are defined as for the syntax of Q. ' ‘ :

Example 6. Using this recipe it can be shown that the semantics of the System specification of
Section 2 boils down to the (at first sight somewhat complicated) stochastic automaton depicted
in Figure 2. Here, empty sets are omitted; in particular b stands for b,@. Although the state
space of this automaton is somewhat larger than that of the direct representation in Figure 1, this
does not have a serious impact on the efficiency of stochastic simulation. Since in our semantics a
state corresponds to a term, simulation can be carried out on the basis of expressions rather than

'Here we assume that p does nat: contain any name clashes of clock variables. This.not a severe restriction sinée
terms that suffer from such name clash can always be properly renamed into a term without such name clash (6]

T
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Table 1: Stochastic automata for @ (X=pe€ E

a,C

pESp P25y
CrpC9G ] LY g
Pi’gpl pigp’
X 25 p ck(p) 25 pr
a,
% (ag A)

Pllaqg 2% p' ||ack(q)
qllap25k(q)|lap’

a,c a,C’
—l —_——
\__p pcuc({ 4 (a € A)
pllag=—=>p'||aq

Figure 2: Stochastic automaton of the compositional G/G/1/00 specification

using their semantic representations. This allows on-the-fly simulation, that is, simulation while
constructing the state space. In this approach the unreachable locations will not be visited. For
instance, for locations in which both an immediate (i.e. an action equipped with no clocks) and
a non-immediate action are enabled, the non-immediate transition will never be traversed. The
corresponding reduction of the state space can also be obtained by syntactical transformation as
shown in Example 9. 0

It turns out that stochastic automata and the language ¢ are equally expressive [6]. This
means that for any (finitely branching) stochastic automaton a corresponding (guarded recursive)
term in the language can be given whose reachable part of its stochastic automaton is identical
to the stochastic automaton at hand, up to renaming of clocks. A recursive specification E is
guarded if X = p € E implies that all variables in p appear in a context of prefix. A stochastic
automaton is finitely branching if for every location the set of outgoing edges is finite.

Structural bisimulation. For process algebras many equivalences and pre-orders have been
defined to compare specifications. One of the most interesting equivalence relations is bisimulation
[15]. The following notion of bisimulation decides the equivalence of stochastic automata on the
basis of their structure. Weaker notions of bisimulation are defined in 6].

Definition 7. Let (S,50,C, A, —>, K, F') be a stochastic automaton. RC S x Sis a structural
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bisimulation if, R is symmetric and whenever s; Rsg, for all a € A, C'C C, we have:
1. 5 =S s implies 3s). s =% s} and s} Rs};

2. k(s1) = K(s2)

If R is a structural bisimulation such that s; Rs2, we write's; < s2 and call s; and s, structurally
bisimilar.

Two stochastic automata SA; and SA» are structurally bisimilar, notation SA; 2 SAy, if their
respective initial locations are structurally bisimilar on the disjoint union of SA; and SA,. If we
omit the clock-related information, we obtain the usual (strong) bisimulation relation on transition
systems [15]. Terms p and q are structurally bisimilar if and only if SA(p) <2 SA(g). The relation
> is a congruence for Q [6]. This means that for any term in our language a sub-term p may be
replaced by its bisimilar equivalent ¢ such that a bisimilar term results.

Equational reasoning. Rather than proving p < ¢ using their semantical interpretation it is
often more convenient to use rules defined on the syntax of p and q that are known to preserve
(in our case) 2. This enables the transformation and comparison of terms at a purely syntactical
level. Some typical axioms are

(p+@+r = ptlg+r)
C—(C'—p = CUC'+p
C—{Cp = {C}C—pifCNC' =2.

In [6] a complete and sound axiomatisation of structural bisimulation for { is presented for finite
terms. Using these axioms any term p can be converted into a canonical form which has the shape
{C}(X- Ci — ai;p;) where p; are terms in canonical form and ) is the usual generalisation of
choice: D g icn Pi equals p + . .. + pn for n>0, and 0 for n=0.

An essential law in traditional process algebras is the expansion law. This law allows one
to reduce parallel composition in terms of prefix and choice, and has proven to be of crucial
importance for verification purposes. A stochastic equivalent of this law can be derived for our
language. In fact, the expansion law is inherent in our model and follows from the way in which
parallel composition is defined. It can be derived using the axioms in [6].

Theorem 8. (Expansion Law) Let p,¢ € O such that p = {C}p" and ¢ = {C'}¢’ with
p=5.Ci—a;pand ¢ = > Cj + bj;q;. Suppose p || 4 ¢ does not contain name clashes. Then
pllag equals : o

{cu C'L‘( > aiga Cirais(pillad’)
+ ijgAcg’_*bﬁ(P'HAQj)

+ YaimpealCiUCH) — ai (pillags) )

Ezample 9. Using structural and probabilistic bisimulation [6] we are able to formally relate
Figure 2 to Figure 1 in the following way. (The following transformations could also be carried
out using equational laws, but this is omitted due to space reasons.) If in a location both an
immediate action and a non-immediate action are possible, then the latter will never be taken
‘since it has to be delayed first. This allows one to remove the locations in the lower row of
Figure 2, except for the two leftmost locations. The thus obtained automaton is depicted in
Figure 3. The only difference with Figure 1 are the b-transitions that are used for the sole purpose
of synchronising the Queue and Server processes. If, as a last step, we would. copy the leftmost
location that contains clock y and subsequently aggregate locations appropriately such that the
b-transitions only occur inside aggregates, then we obtain the automaton of Figure 1. This latter
transformation can be formalised using the ‘common notion of abstraction in process algebra and
weak bisimulation equivalence [15], a notion of equivalence that allows one to abstract from internal
moves. This approach is applied to Markovian quéues in [10], and is for our setting an interesting
. subject for further work. L o v : S B
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Figure 3: Reduced automaton

5 Related work

Other stochastic process algebras. Since 1990 extensions of process algebras have been in-
vestigated in which the time of actions is determined by (continuous) distribution functions. In
languages like TIPP [11], PEPA (12] and EMPA [2] the time of actions is controlled by exponential
distributions. The elementary operator in these languages is ay; p with rate A\. This corresponds
to {zrl{zr} v a:p with F(t) =1-e . Due to the memoryless property of exponential dis-
tributions the semantics of these languages can adequately be described using labelled transition
systems that closely resemble continuous-time Markov chains. Various useful links between process
algebras and Markov chains have thus been established, e.g. between bisimulation and lumping
[12].

In fact, our presented approach can be considered as a generalisation of this line of research
using GSMPs rather than Markov chains. To our knowledge the use of a process algebra to
specify GSMPs is novel. [14] used GSMPs indirectly: they map an extended process algebra onto
event structures, and obtain for a subclass of event structures a GSMP. For recursive processes
infinite event structures are obtained which makes this approach less suited for the use of efficient
regenerative simulation techniques. The finite representations we obtain do not suffer from this
problem.

Process algebra and discrete-event simulation. Harrison & Strulo [9] developed a stochastic
process algebra to formally describe discrete-event simulation. Typically their semantic objects
are highly infinite. Although their work is somehow related to ours, stochastic automata appear
to be more intuitive and resemble more closely the conceptual ideas of simulation languages. In
particular, measure theory only plays a role in our case when defining the formal interpretation
of stochastic automata.

Pooley [16] investigates the mapping of a high-level language for describing discrete-event
simulation models, baptised extended activity diagrams, onto the timed process algebra TCCS
and the simulation language Demos [3]. Using this framework Pooley is able to check certain
properties of a model a priori to simulation, by analysing the (T)CCS specification. In this work
distribution functions are neglected and the use of process algebra is quite different from ours.

Birtwistle and Tofts use process algebras, basically CCS and its synchronous variant SCCS, to
provide a denotational semantics of Demos [4]. They focus on analysing properties like absence of
deadlock and livelock and do not consider any timing aspects.

6 Concluding remarks

In this paper we presented a novel process algebra suitable for specifying GSMPs in a compositional
way. The concept of stochastic automata has been introduced and is shown to properly contain a
large class of GSMPs. Since our process algebra @ and stochastic automata are equally expressive,

syntactically.
We have currently implemented a prototypical tool that allows us to simulate specifications
written in ). The simulation algorithm takes a Q specification and an additional process to resolve
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possible non-determinism in this process as input, and automatically generates simulation runs.

We applied our prototype to model and analyse a multi-processor system that is vulnerable to
failures {7].
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