Nieuwsbrief van de

Nederlandse Vereniging voor Theoretische Informatica,

Mieke Bruné, Jan Willem Klop, Jan Rutten (redactie)*

Inhoudsopgave
1 Van de Redactie 2
2 Samenstelling Bestuur 2
3 Van de voorzitter 2
4 Theoriedag 2001 3
5 Mededelingen van de onderzoekscholen 6
5.1 Institute for Programming research and Algorithmics 6
5.2 Dutch Research School in Logic (OzsL), door: Jan van Eijck 7
6 Wetenschappelijke bijdragen 10
6.1 Specifying Internet applications with DiCons: J.C.M. Baeten, H.M.A. van Beek, S.
Mauw . .o e e e e 10
6.2 Performance Evaluation of Integrated-Services Networks: Sem Borst 21
6.3 VERIFICARD A European Project for Smart Card Verification: Bart Jacobs, Hans
Meijer and Erik Poll 32
7 Ledenlijst 39
8 Statuten 51

*CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands. Email: mieke@cwi.nl.

1 Van de Redactie

Beste NVTI-leden,

Graag bieden wij u hierbij het vijfde nummer aan van de jaarlijkse NVTI-Nieuwsbrief. Bij het
samenstellen hebben we weer de formule van de vorige vier nummers gevolgd. Zo vindt u naast
het programma van de jaarlijkse Theoriedag en de bijgewerkte ledenlijst ook weer enkele bijdragen
van collega’s met een korte inleiding in hun speciale gebied van expertise. Evenals voorgaande
jaren zouden deze Nieuwsbrief en de Theoriedag niet tot stand hebben kunnen komen zonder de
financiele steun van onze sponsors: GEB-NWO (vroeger SION), Elsevier Publishing Company, en
de onderzoekscholen IPA en OZL. Namens de NVTI gemeenschap onze hartelijke dank voor deze
middelen die ons voortbestaan mogelijk maken!

De redactie,

Mieke Bruné (mieke@cwi.nl)
Jan Willem Klop (jwk@cwi.nl)
Jan Rutten (janr@cwi.nl)

2 Samenstelling Bestuur

Prof.dr. J.C.M. Baeten (TUE)

Dr. H.L. Bodlaender (UU)

Prof.dr. J.W. Klop (VUA/CWTI) voorzitter
Prof.dr. J.N. Kok (RUL)

Prof.dr. J.-J.Ch. Meyer (UU)

Prof.dr. G.R. Renardel de Lavalette (RUG)
Prof.dr. G. Rozenberg (RUL)

Dr. J.J.M.M. Rutten (CWI) secretaris

Dr. L. Torenvliet (UvA)

3 Van de voorzitter

Geacht NVTIL-lid,

Ook dit jaar heeft het Bestuur zich beijverd om een interessante Theoriedag te organiseren,
met prominente sprekers uit binnen- en buitenland. De Theoriedag zal gehouden worden op
vrijdag 23 maart, in het Jaarbeurs Congrescentrum Utrecht. We hopen en vertrouwen erop dat
het programma voor velen van u interessant is. Graag tot ziens op 23 maart in Utrecht!

Jan Willem Klop, voorzitter NVTI

4 Theoriedag 2001

Vrijdag 23 maart 2001, Jaarbeurs Utrecht

Het is ons een genoegen u uit te nodigen tot het bijwonen van de Theoriedag 2001 van de NVTI,
de Nederlandse Vereniging voor Theoretische Informatica, die zich ten doel stelt de theoretische
informatica te bevorderen en haar beoefening en toepassingen aan te moedigen. De Theoriedag
2001 zal gehouden worden op vrijdag 23 maart 2001, in het congrescentrum Jaarbeurs Utrecht,
op enkele minuten loopafstand van CS Utrecht, en is een voortzetting van de reeks jaarlijkse
bijeenkomsten van de NVTI die zes jaar geleden met de oprichtingsbijeenkomst begon.

Evenals vorige jaren hebben wij een aantal prominente sprekers uit binnen- en buitenland be-
reid gevonden deze dag gestalte te geven met voordrachten over recente en belangrijke stromingen
in de theoretische informatica. Naast een wetenschappelijke inhoud heeft de dag ook een informa-
tief gedeelte, in de vorm van een algemene vergadering waarin de meest relevante informatie over
de NVTI gegeven zal worden, alsmede presentaties van de onderzoekscholen.

Programma

09.30-10.00: Ontvangst met koffie

10.00-10.10: Opening

10.10-11.00: Lezing Prof.dr. R. Milner (University of Cambridge)
Titel: The Flux of Interaction

11.00-11.30: Kofhie

11.30-12.20: Lezing Prof.dr. A. Siebes (Universiteit Utrecht)
Titel: Biolnformatics

12.20-12.50: Presentatie Onderzoeksscholen (OZL, IPA, SIKS)

12.50-14.10: Lunch (Zie beneden voor registratie)

14.10-15.00: Lezing Prof.dr. D. Harel (The Weizmann Institute of Science, Israel)
Titel: On the Aesthetics of Diagrams

15.00-15.20: Thee

15.20-16.10: Lezing Prof.dr. K. Apt (CWI, Universiteit van Amsterdam)
Titel: A Primer on Constraint Programming

16.10-16.40: Algemene ledenvergadering NVTI

Samenvattingen van de voordrachten
Prof.dr. R. Milner:
The Flux of Interaction

The lecture will be about a simple graphical model for mobile computing. Graphical or geo-
metric models of computing are probably as old as the stored-program computer, possibly older.
I don’t know when the first lowchart was drawn; but since then, many other graphical mod-
els have followed. In particular, in the 1960s Petri nets made a breakthrough in understanding
synchronization and concurrent control flow.

There are now many process calculi concerned with mobility, both of process links and of the
processes themselves. While these calculi were evolving, I have tried with colleagues to distill their
shared mobile geometry into a notion of action graph and an associated calculus. These are based
upon a notion of molecule, a node in which further graphs may nest. A signature determines a
set of molecule types, and a set of reaction rules determines what configurations of molecules can
react. Depending on the choice of signature, a molecule and its contents may represent a data
constructor, a cryptographic key, a message, a physical location, a lambda-abstraction, a program
script, an administrative region, a term of the pi-calculus, an ambient (in the sense of Cardelli
and Gordon), and so on. In the lecture I shall outline the behavioural theory of action graphs.

Prof.dr. A. Siebes:
Biolnformatics

The end of the Human Genome project is the beginning of an even bigger challenge: proteomics.
We know the book, but what does it mean? Using a few concrete projects, I will highlight some
of the interesting computer science problems that need to be solved before the biologists can solve
their problems.

Prof.dr. K. Apt:
A Primer on Constraint Programming

The last four years I have been studying constraint programming. It took me some time to
understand the subject but I believe I can now explain its essence to a congenial audience in one
hour.

An interesting aspect of constraint programming is that in some areas like combinatorial op-
timization and numerical analysis it occasionally led to an improvement of the state of the art
solutions that were obtained by means of the conventional methods. Another is that it allows us to
view some well-known techniques, like the resolution method or Gaussian elimination as instances
of constraint programming techniques.

To understand why it is the case we explain the concepts of constraint satisfaction problems,
constraint propagation, and constraint solvers and put them together in a coherent framework.

Finally, we clarify the special nature of constraint programming languages by focusing on the
use of variables. In computer science a variable stands for a place holder for a value, in mathe-
matics for an unknown. In most constraint programming languages both uses are present.

Prof.dr. D. Harel:
On the Aesthetics of Diagrams

Given the extensive move towards visual languages and visual interfaces in the design and usage
of computerized systems, the need for algorithmic procedures that produce clear and eye-pleasing
layouts of complex diagrammatic entities arises in full force. The main part of this talk addresses
a modest, yet still very difficult version of the problem, in which the diagrams are merely general
undirected graphs with straight-line edges. We describe work done with a series of students over
the last 12 years, starting from a system based exclusively on simulated annealing, and culminating
with a far more powerful approach, based on a multi-level scheme, which can deal successfully and
rapidly with extremely large graphs containing thousands of nodes. We then turn to a problem
of different nature, the layout of *blob” hierarchies (nested rectangular shapes), with applications
to window systems, web-page design, and higraph-based languages, such as object models and
statecharts.

Lidmaatschap NVTI

Aan het lidmaatschap zijn geen kosten verbonden; u krijgt de aankondigingen van de NVTI
per email of anderszins toegestuurd. Wilt u lid van de NVTI worden: u kunt zich aanmelden bij
het contactadres beneden (M. Bruné, CWI), met vermelding van de relevante gegevens: naam,
voorletters, affiliatie indien van toepassing, correspondentieadres, email, URL, telefoonnummer.

Lunchdeelname

Het is mogelijk aan een georganiseerde lunch deel te nemen; hiervoor is aanmelding verplicht.
Dit kan per email of telefonisch bij Mieke Bruné (mieke@cwi.nl, 020-592 4249), tot een week
tevoren (15 maart). De kosten kunnen ter plaatse voldaan worden; deze bedragen f 25,-. Wij wi-
jzen erop dat in de onmiddellijke nabijheid van de vergaderzaal ook uitstekende lunchfaciliteiten

gevonden kunnen worden, voor wie niet aan de georganiseerde lunch wenst deel te nemen.

5 Mededelingen van de onderzoekscholen

Hieronder volgen korte beschrijvingen van de onderzoekscholen:
e Instituut voor Programmatuurkunde en Algoritmiek

e Landelijke Onderzoekschool Logica

5.1 Institute for Programming research and Algorithmics

The research school IPA (Institute for Programming Research and Algorithmics) educates re-
searchers in the field of programming research and algorithmics. This field encompasses the study
and development of formalisms, methods and techniques to design, analyse, and construct soft-
ware systems and components. IPA has three main research areas: Algorithmics & Complexity,
Formal Methods and Software Technology. In 2000, the composition of IPA was unchanged. Re-
searchers from eight universities (University of Nijmegen, Leiden University, Eindhoven University
of Technology, University of Twente, Utrecht University, University of Groningen, Vrije Universi-
teit Amsterdam, and the University of Amsterdam), the CWI and Philips Research (Eindhoven)
participated.

IPA has two multi-day events per year, which focus on upcoming new subjects. In 2000, the
Spring Days were on UML, the Fall Days on Applied Algorithmic Design. UML (Unified Modeling
Language) has rapidly become a de facto standard in the software industry. The existence of
a widely used and powerful language offers new possibilities for connecting academic research
to industrial practice. The Spring Days sought to explore these possibilities. As it turns out,
the UML standard gave rise to many interesting research questions which are also of industrial
significance, i.e. with respect to the implementation of the standard in development support tools.
These Fall Days featured the Algorithmics research in IPA that deals with “traditional algorithms”
(as opposed to the research in Natural Computation that addresses genetic algorithms, neural
nets and quantum computing). These algorithms have a wide range of applications, and new
applications are constantly being developed. Designing these algorithms raises many interesting
research questions on which quite a few people in IPA are working, often in close collaboration with
industry. The Fall Days highlighted this work on Applied Algorithm Design, with days dedicated
to different application areas, such as logistics, multi-media (algorithms for storage and retrieval,
quality of service), and digital networks (algorithms for resource management, Web-algorithms
and security).

On the European front, we saw the build-up of the European Educational Forum. IPA coope-
rates in EEF with BRICS (Denmark), TUCS (Finland) and UKII (United Kingdom). 2000 saw
the addition of Italian, German and French consortia, so that we can truly speak of a research
school of European dimensions. EEF activities included the Trends Schoo! on Formal Methods
and Performance Analysis, organised by our Twente partners, the Foundations School in Deduc-
tion and Theorem Proving in Edinburgh and the School on Foundations of Security Analysis and
Design in Bertinoro, Italy. Besides, we sponsored the Fifth Dutch Proof Tools Day, held in Gent
Belgium.

Ph.D. Defenses in 2000

K.M.M. de Leeuw. Cryptology and Statecraft in the Dutch Republic.
Faculty of Mathematics and Computer Science, UvA

T.E.J. Vos. UNITY in Diversity. A stratified approach to the verification of distributed algo-
rithms. Faculty of Mathematics and Computer Science, UU

W. Mallon. Theories and Tools for the Design of Delay-Insensitive Communicating Processes.
Faculty of Mathematics and Natural Sciences, RUG

W.O.D. Griffioen. Studies in Computer Aided Verification of Protocols.
Faculty of Science, KUN

P.H.F.M. Verhoeven. The Design of the MathSpad Editor.
Faculty of Mathematics and Computing Science, TUE

J. Fey. Design of a Fruit Juice Blending and Packaging Plant.
Faculty of Mechanical Engineering, TUE

M. Franssen. Cocktail: A Tool for Deriving Correct Programs.
Faculty of Mathematics and Computing Science, TUE

P.A. Olivier. A Framework for Debugging Heterogeneous Applications.
Faculty of Natural Sciences, Mathematics and Computer Science, UvA

E. Saaman. Another Formal Specification Language.
Faculty of Mathematics and Natural Sciences, RUG

Activities in 2001

In 2001, the Spring Days will be on April 18-20 in Heeze, on the topic of Security. Further details
will become available on our recently reconstructed web-site, see:
http://www.win.tue.nl/cs/ipa/activities /springdays2001/. Further, we will have our basic courses
on Software Technology, in the first half of the year, and on Algorithms and Complexity in the
second half.

In EEF, there is the Trends School on Software Architecture in Finland in August, and the
Foundations School on Logical Methods in Denmark in June (http://www.brics.dk/LogicsSchool01/).
Further, there is the School on Foundations of Wide Area Network Programming in Lipari and
the School on Process Algebras in Bertinoro, both in Italy
(http://lipari.dmi.unict.it/Lipari/indez.asp and hitp://www.cs.unibo.it/” aldini/sfm01pa/).

Addresses

Visiting address Postal address
Eindhoven University of Technology IPA, Fac. of Math. and Comp. Sci.
Main Building HG 7.17 Eindhoven University of Technology
Den Dolech 2 P.O. Box 513
5612 AZ Eindhoven 5600 MB Eindhoven
The Netherlands The Netherlands

tel. (+31)-40-2474124 (IPA Secretariat)
fax (+31)-40-2475361
e-mail ipa@tue.nl url http://www.win.tue.nl/cs/ipa/

5.2 Dutch Research School in Logic (OzsL), door: Jan van Eijck

The Dutch Research School in Logic (OzsL) is active in three main areas: mathematical logic, logic
in linguistics and philosophy, and logic in computer science. Formal participants in the School
are the University of Amsterdam, the Free University in Amsterdam, the University of Utrecht,
the University of Groningen, and Tilburg University. In addition, there are numerous associate
members, to cater for the need of those who have active scientific links with the OzsL community,
while politicial reasons argue against full participation. The general policy of the school is to
foster cooperation rather than competition with neighbouring schools, and associate membership
is open for all our neighbours.

International cooperation agreements exist with Stanford University, the University of Edin-
burgh, the University of the Saarland, and the University of Stuttgart. Funding is available for
visitor exchanges within this international network, and regular international workshops take place
within the network.

The Ph.D. courses offered by the school fall in two categories: courses that are part of the
‘school week curriculum’, and master classes. School weeks are offered twice a year. To give an
idea of the contents, here is a recent sample:

Autumn 2000 School Week, Nunspeet The program consisted of the following:

* A one-day event where staff members gave short short accounts of their current research
interests: Adult Accolade ”{”.

e A tutorial on co-algebra.
e A tutorial on finite model theory and modal logic.

® A special session on Logic in Linguistics with presentations by a logician and a computational
linguist, and discussion with a sample of Dutch linguists.

e An afternoon with Samson Abramsky, with an overview of recent work on logic and games
in theoretical computer science.

¢ A Logic and Games event, with presentations by school members interested in applications
of game theory.

A one-day closing event where PhD students gave short short accounts of how their research
is going: Accolade 7} ”.

Further details can be found in the web archive of the School, at address
http://www.ozsl.uva.nl/archive.html.

The yearly Accolade Event, that always takes place in combination with the Autumn School
Week is an occasion where PhD students within the school present their work to the outside world
in an informal setting. The purpose of Accolade is to inform the community about how individual
Ph.D. projects were progressing, and to stimulate mutual interest. Accolade has as its single aim
to inform the Dutch logic community about how the Ph.D. projects within the School are going,
irrespective of whether these projects are in an initial, intermediate or final stage of research.
Participants and audience are enthousiastic about the formula, where PhD students get useful
response in a supportive setting.

Accolade for Adults is a recent addition to the School activities. This complement event to
Accolade for PhDs, also known under various silly nicknames, is meant to create an opportunity for
staff members within the School to give brief outlines of their research, for an audience consisting
of their colleagues and the PhD students of the School.

OzsL issues LIN (‘Logic in the Netherlands’), a newsletter for the Dutch logic community
(in the broadest possible sense) that appears at rather irregular intervals, both on paper and
electronically. Subscription is free of charge; please send an email to the OzsL Office Manager
dr Peter Blok at pblok@wins.uva.nl to subsribe. Further information about the school and its
activities is available electronically, at http://www.ozsl.uva.nl.

OzsL is deeply involved in European Summer School activities in logic: the well known ES-
SLLI (European Summer School in Logic, Language and Information) meetings. The next (13th)
ESSLLI School takes place in Helsinki, 13-24 August 2001. Further information can be obtained
from http://www.helsinki.fi/ess11i. Here is a quote from the web page:

The main focus of ESSLLI is the interface between linguistics, logic and computation.
Courses, both foundational, introductory and advanced, cover a wide variety of topics
within six areas of interest: Logic, Computation, Language, Logic and Computation,
Computation and Language, Language and Logic. Previous summer schools have been
highly successful, attracting around 500 participants from Europe and elsewhere. The
school has developed into an important meeting place and forum for discussion for
students, researchers and IT professionals interested in the interdisciplinary study of
Logic, Language and Information. In addition to courses, workshops and evening

lectures there will be special events, a student session and a social program. The
number of courses offered is over 50.

Finally, OzsL collaborates with VvL, the Dutch Association for Logic (Vereniging voor Logica)
in organizing activities for a broader community with an interest in logic. See the web site of VvL,
at http://www.cwi.nl/vvl.

6 Wetenschappelijke bijdragen

6.1 Specifying Internet applications with DiCons: J.C.M. Baeten, H.M.A.
van Beek, S. Mauw

Eindhoven University of Technology

10

Specifying Internet applications with DiCons

J.C.M. Baeten
Department of Mathematics
and Computing Science,
Eindhoven University of
Technology, P.O. Box 513,
5600 MB Eindhoven,
The Netherlands

josb@win.tue.nl

Keywords
Internet applications, language design, distributed consen-
sus, DiCons.

ABSTRACT

It is not easy to build Internet applications with common
techniques, such as CGI scripts and Perl. Therefore, we
designed the DiCons language, which supports the develop-
ment of a range of Internet applications at the appropriate
level of abstraction. In this paper we discuss the design of
DiCons, we give an overview of the tool support and we
explain the language by means of an example.

1. INTRODUCTION

Some trends concerning the development of new Internet
applications can be observed. First of all, the Internet and
applications of Internet are developed with a tremendous
speed. The first to come with an interesting application
sets the standard for that application area. Many new ser-
vices are realized, for example applications which support
auctions or voting via Internet.

Secondly, large portals replaced the old style search engines.
They provide functionality that goes beyond mere guidance
through the Internet. The longer that the visitor stays at
the portal site and the more often that he uses functionality
provided by the portal, the higher the income from adver-
tisements will be. Therefore, portals must offer interesting
applications and must keep their functionality up to date.
This does not only imply that portals must maintain a large
set of applications, but also that they must be able to rapidly
develop new services. Short time to market is an important
asset.

The third observation is that the number of commercial
transactions on the Internet is growing. Security and de-
pendability are important factors at all levels of interac-
tion. Apart from proper use of cryptographic techniques,
this also requires that the protocols by which information
is exchanged are correct. A voting system, e.g., must guar-
antee that the winner is actually the candidate that has

To appear in the conference Proceedings of the 16th ACM Symposium on
Applied Computing (SAC 2001), Las Vegas, USA, March 2001.

H.M.A. van Beek
Eindhoven Embedded
Systems Institute (EESI),
Eindhoven University of
Technology, P.O. Box 513,
5600 MB Eindhoven,
The Netherlands

harm@win.tue.nl

S. Mauw
Department of Mathematics
and Computing Science,
Eindhoven University of
Technology, PO. Box 513,
5600 MB Eindhoven,
The Netherlands

sjouke@win.tue.ni

received most support.

‘We want to be able to quickly develop secure and depend-
able Internet applications. Some problems that occur are,
firstly, that several languages are involved, such as html, cgi
scripts, and other scripting languages. Secondly, the level of
abstraction of the language used often does not correspond
to the level on which we think about an application: there is
no C-primitive for filling out a Web form. Thirdly, current
practices do not lend themselves to validation or verification.

Thus, our goal is to develop a language at the right level of
abstraction, that is amenable to (formal) validation or ver-
ification. In order to make the problem more concrete and
the solution more feasible, we limit the class of applications
we consider. First of all, we consider applications where sev-
eral users strive to reach a common goal without having to
meet. We call this kind of applications distributed consensus
applications. A central location on an Internet server should
support this. We are interested in asynchronous communi-
cation, as exemplified by the sending of e-mails and Web
forms. Users do not communicate directly but only commu-
nicate with the central application. Finally, we only want
to use standard techniques, so the user does not require
special programs, software or plug-ins. An Internet con-
nection, e-mail and a Web browser should suffice, on any
hardware/software platform.

In this paper a new specification language DiCons (Distri-
buted Consensus) is introduced to specify Internet applica-
tions for distributed consensus. Major characteristic of this
class of protocols is that a number of users strive to reach a
common goal (e.g. make an appointment, evaluate a paper,
select a “winner”). The problem is that the users do not
want to physically meet to solve their goal, nor will there
be any synchronized communications between the users. A
central system, viz. an Internet application, must be used
to collect and distribute all relevant information.

This class of applications was the starting point for devel-
oping our language. The language must both be expressive
enough and concrete. In order to be applicable to an appro-
priate range of problems, it must have the right expressive
power. The language must be concrete enough, such that
automatic generation of an executable is feasible.

Typical examples of applications that our research targets
at, are: Meeting scheduler, election support system, auc-
tion, and gift selection. These examples have in common
that they support a task which is algorithmically simple but
requires many interactions. This task is taken over by a
central application, handling all interactions with the users.
In this paper, we illustrate this by the example of a gift
selection system.

The purpose of this paper is to give a description of the lan-
guage DiCons and the tools developed for it. To this end, we
first give an overview of the design decisions we took in or-
der to arrive at this language and its prototype tools. Next,
we illustrate the use of DiCons by the example of the gift
selection system. After that, we compare our approach with
other methods and techniques. Finally, we finish with some
concluding remarks and ideas for the further development
of the language and tools.

2. DESIGN OF DICONS

In this section we will discuss the considerations that led to
the current design of the DiCons language and we describe
the basic ingredients of DiCons.

2.1 Restrictions

In order to not have to face the complete problem of writ-
ing Internet applications in general we restrict our problem
setting in several ways. First of all, we focus on a class of
applications which is amenable to formal verification with
respect to behavioral properties. This means that the com-
plexity of the application comes from the various interac-
tions between users and a system, rather than from the data
being exchanged and transformed. Implications for the de-
sign of the language are that the primitive constructs are in-
teractions, which can be composed into complex behavioral
expressions. Furthermore, it implies that the development
of the language and its formal semantics must go hand in
hand. Nevertheless, we will not discuss semantical issues in
the current paper.

A further restriction follows from the assumption that al-
though the users work together to achieve some common
goal, there will be no means for the users to communicate
directly with each other. We assume a single, central appli-
cation that follows a strictly defined protocol in communi-
cation with the users.

The last consideration with respect to the design of DiCons
is that we want to make use of standard Internet technology
only. Therefore, we focus on communication primitives such
as e-mail and Web forms. This means that a user can inter-
act with the system with a standard Web browser, without
the need for additional software such as plug-ins. Of course,
it must be kept in mind that the constructs must be so gen-
eral as to easily support more recent developments, such as
ICQ or SMS messages. Currently, we only consider asyn-
chronous communication between client and server.

2.2 Overview of language constructs

Bearing above considerations with respect to the applica-
tion domain and available technology in mind, we come to a
description of the basic constructs of DiCons. We will first

list the language ingredients and later discuss these in more
detail, without precisely defining their syntax and seman-
tics. The example in Section 4 will serve to show the flavor
of the DiCons syntax and the way in which the language
can be used. ’

users and roles The first observation is that, since an ap-
plication may involve different users, the application
must be able to identify users. Moreover, since differ-
ent users may want to use the system in the same way,
it must be possible to group users into so-called roles.

interactions We have to identify the communication prim-
itives, which we will call interactions. They form the
basic building blocks of the behavioral descriptions.
Interactions are abstract descriptions which are iden-
tified by their name and may carry input and output
parameters.

behavior A number of interactions with the same user may
be combined to form a session. Sessions and interac-
tions can be composed into complex behavioral de-
scriptions which define an application.

presentations The abstract interactions are represented to
the user by means of concrete communication means,
such as e-mail and Web forms. This is called the pre-
sentation of an interaction.

data In order to transform (user) data and keep state in-
formation, we need a means to define and manipulate
data (expressions, variables, data structures, etc.)

2.3 Users and roles

A user is an entity that can interact with the system. A
user has three attributes: a name (for reference), an e-mail
address (in case e-mail communication is desired), and a
password (in case user authentication is needed). Users are
grouped according to their role. Users with the same role
are offered the same interaction behavior. In DiCons roles
can be defined and variables can be declared which denote
users with a given role.

2.4 Interactions

The basic problem when defining the interaction primitives
is to determine the right level of abstraction. Taking, e.g., an
http request as a primitive interaction will lead to programs
which are too detailed. On the other hand, if we would
define a complete user session as a primitive interaction,
we could not deal with the variety of different sessions that
occur in an application.

In order to get a feeling of the level of abstraction which
is optimally suitable, look at Figure 1. In this drawing we
sketch a typical scenario of an Internet application which is
called the Meeting Scheduler (see [22]). This is an applica-
tion which assists in scheduling a meeting by keeping track
of all suitable dates and sending appropriate requests and
convocations to the intended participants of the meeting.

The drawing is a so-called Message Sequence Chart (MSC,
see [17]), which is a standardized visual language, especially
suited for requirements engineering. The example shows

msc Basic scenario
Initiator Server Part-1 Part-2 Part-3
| | L] | | l
initialize
invite
indite
invite
info
info
info
options
choice
convocate
convegcate
convocate
show ggenda
i . BN] *]

Figure 1: A scenario of an Internet application

that we have two roles, viz. initiator and participant. In
this scenario, there is only one user with role initiator, while
there are three users with role participant. The MSC shows
that the initiator starts the system by providing it with
meeting information. Next, the system sends an invitation
to the participants who reply by stating which dates suit
them. After collecting this information, the system informs
the initiator about the options for scheduling the meeting
and awaits the choice made by the initiator. Finally, the
system informs the participants about the date and offers
the users to have a look at the agenda. Only participant 2
is interested in the agenda.

This example nicely shows at which level of detail one wants
to specify such an application. The arrows in the diagram
represent the basic interaction primitives. First, look at the
invite messages. Since the participants don’t know that they
will be invited for a meeting, the initiative of this interaction
is at the server side. The way in which a server can actively
inform a client is by sending an e-mail. This interaction only
contains information transmitted from the server to the user.
The messages options and convocate are also implemented
as e-mails.

Next, look at message info. This interaction is initiated by
the user and is best implemented as a Web form supplied by
the server, on request of the user and filled in by the user.
The message choice also stands for a Web form being filled
in.

The last message, show agenda contains information sent by
the server to the user, on request of the user. This is simply
the request and transmission of a non-interactive Web page.

Finally, we look at the first message, initialize. The initiator
has to supply the system with various kinds of information,

such as a list of proposed dates and a list of proposed par-
ticipants. This will probably be implemented as a dialogue
between the user and the system in the form of a series of
Web forms. This is called a session.

‘We summarize the three basic interaction schemes in Fig-
ure 2. Notice that the third scheme, the session, consists of
a series of more primitive interactions. It starts with a client
requesting a form and submitting it after having it filled in.
This is the interaction which starts the session. Next, comes
a series of zero or more submissions of Web forms. These are
interactions which come in the middle of a session. And, fi-
nally, the session ends with the server sending a simple Web
page after the last submission of the client.

In DiCons we have constructs for these five interaction prim-
itives. We have used a naming scheme for the interaction
primitives which is based on their properties. First, we make
a distinction based on the flow of information. If the infor-
mation goes from the server to the client, we call this a server
push, while if the information flows to the server, we call this
a server pull. Notice that we reason from the viewpoint of
the server in this respect.

The second distinction which we make is on which party
takes the initiative for the interaction. Still reasoning from
the viewpoint of the server we consider an active communi-
cation, which means that the server takes the initiative, a
reactive communication, which means that the client takes
the initiative, and a session oriented communication, which
means that the communication is a response from the server
to a prior submission of a Web form by the client.

Finally, notice that we extend the interaction primitives with
parameters to express which information is being transmit-
ted. An output parameter denotes information sent by the
server to the client, while an input parameter is a variable
in the data space of the server which will contain the infor-
mation sent by the client to the server.

The notation for our communication primitives is given be-
low.

active server push The server takes the initiative to send
information (for o; (0 < ¢ < n) output parameters):

mail to client « message(op,... , On)

reactive server push The server sends a Web page on re-
quest of the client (for o; (0 < ¢ < n) output parame-
ters):
client <~ message(out og,... , out o,)

reactive server pull The server sends a Web form on re-
quest of the client. After that, the client submits the
filled in form. This interaction denotes the starting
of a session. (for i, (0 < k < m) input parameters,
ox (0 < k < n) output parameters and v (0 < k < p)
input/output parameters):

start session of client — message(in o, ...
out oo, ..., out o, var vg,..., var vp)

,in iy,

msc e-mail

Client Server

LT[1]

email

msc page-query msc session
Client Server Client Server
req-url
req-url web-form
submission
web-page web-form
{submission
web-page

Figure 2: Interaction primitives

session-oriented server pull The server sends a Web form
to the client as a response to a prior form submission
by the client. After that, the client submits the filled
in form. This interaction is repeated in the middle
of a session. (for iy (0 < k < m) input parameters,
ok (0 < k < n) output parameters and v¢ (0 < k < p)
input/output parameters):

session of client — message(in i, ...
out og,... , out o,, var vy, ...

, in iy,
, var vp)

session-oriented server push The server sends a non-in-
teractive Web page to the client in response to a prior
form submission by the client. This interaction is the
last interaction of a session. (for o; (0 < i < n) output
parameters):

end session of client < message(out oy, ..., out o0,)

Please notice that in our list of interaction primitives we
did not mention the active server pull. The reason for this
is simply that with standard Internet technology this inter-
action cannot be implemented. A Web server cannot take
the initiative to obtain information from a client.

2.5 Behavior

Now that we have defined the basic interaction primitives,
we can discuss the means to compose them into sessions
and applications. An application describes the protocol to
be executed by the server. A number of standard program-
ming language constructs are supported in DiCons. We
mention the following: sequential composition (denoted by
a semi-colon), conditional branching (if-then-else-fi), repe-
tition (for-all-do-od, and while-do-od, which is a parallel
repetition), Since in most applications that we have studied
users have to react before a given deadline, we have included
a time-out construct in DiCons (until-do-od, which means
that the body of this expression may execute until the given
deadline). Finally, in order to manipulate the internal state
of the application, we have assignments to variables and pro-
cedure calls. A session is simply a program fragment with
the requirement that execution starts with a session-start
interaction and ends with a corresponding session-end in-
teraction.

2.6 Presentations

The interactions which are composed into a DiCons appli-
cation are abstract in the sense that they only carry a name
and possibly some parameters. Additional information is
needed to determine how the interaction is implemented. In
case of an e-mail, we need to specify the addresses of the
sender and the receiver, the subject field, the body text and
the places where the values of the output parameters must
be filled in.

In case of a Web form, we must also define the fields where
the user can type in values which are stored in the input pa-
rameters of the interaction. Furthermore, DiCons supports
the inclusion of Java scripts which can put syntactic restric-
tions on the input provided by the user. Other supported
features are pull-down selection menus, submit buttons, ra-
dio buttons and check boxes.

2.7 Data

Storing and manipulating data occurs at several places in
a DiCons application. Therefore, a well equipped data lan-
guage must be part of DiCons. Many programming lan-
guages have been developed to support the manipulation of
data, so, rather than developing our own dedicated data lan-
guage, we decided to include an existing language, namely
Java [12]. The main reason for selecting Java, lies in its pop-
ularity in the Internet community, but also implementation
issues made us decide for Java (because we use Java servlets,
see Section 3).

In order to make DiCons as independent from the chosen
data language as possible, we have defined the language in
such a way that the included data language and the other
parts of the language are orthogonal. Java fragments are
only allowed in the definition of functions and procedures.
Interaction with the other parts of the language takes place
by calling these functions. In this way, Java can be easily
substituted by other languages, such as C.

3. TOOLS FOR DICONS

We make use of several existing (Internet) techniques. First
of all, we make use of Java servlets [16, 28]. These servlets
generate HTML pages and HTML forms [25]. If data con-
straints are included into Web form, these constraints are
checked by a piece of JavaScript code [14] which makes use
of the regular expression, specified in the Perl/JavaScript
regular expression syntax [11].

3.1 JavaCC

To implement a parser we have chosen to use the Java
parser gemerator Java Compiler Compiler (JavaCC) [23].
This choice is made because we are specifying an Internet
application and Java is the Internet specification language
par excellence. JavaCC is a parser generator that produces
parsers in Java from grammar specifications written in a
lex/yacc-like manner.

We have implemented a package of classes which specify the
different parts of the language: roles, types, variables, func-
tions, interactions, sessions and the execution. After parsing
an application, an object of type DiConsApplication is cre-
ated. This object consists of different objects, all specifying
one part of the application. These objects all have a method
to convert that specific part of the application to a piece of
Java code. By putting all these pieces together we get a
Java application, viz. a Java servlet. This servlet can be
compiled to Java byte-code by using a regular Java com-
piler. The file containing Java byte-code can be interpreted
by a Web server.

3.2 Technical Aspects

In this section we will discuss some aspects of our specifi-
cation which are non-trivial to implement. Since we cannot
have multiple executions of one single servlet simultaneously
we have to implement some kind of instance management
and session management. The problem is that we want to be
able to start several instances of some DiCons application.
These instances must run independently and have disjoint
state spaces. Within an instance of an application, several
users may start parallel or overlapping sessions. Such ses-
sions share the same data space.

3.2.1 Instance management

The serviet API does not implement instance management
in the way we need it. It implements sessions using client-
side cookies. Since one instance might concern more than
one client, cookies cannot solve our instance management.

We introduce a new class ServletInstance in which all data
concerning one instance can be stored. Furthermore, we add
a variable containing the collection of available instances to
our servlet. Each instance gets its own unique identifier. If
one accesses the servlet without referring to an instance, a
new instance is created. During a session, all Web forms are
extended with a hidden variable containing the correspond-
ing instance identifier. Submitting a Web form now results
in including this identifier in the posted data. One can also
call a servlet using a rewritten URL. This URL is extended
with a query string containing an instance identifier. Call-
ing the servlet like this results in continuing an instance if
this is possible. If this instance does not exist the instance

identifier is ignored and a new instance with a new, unique
identifier is create. This identifier is composed of a letter 1
followed by eight randomly chosen digits.

Each time a servlet is called it checks whether an instance
identifier is passed. If so, it tries to load that instance’s
data and continue the instance’s execution. Otherwise, a
new instance is created.

3.2.2 Session management

Session management support is built into the serviet API by
using cookies. However, these techniques do not answer our
needs. By using cookies we do not have the ability to run
multiple simultaneous sessions using one and the same Web
browser. Though this is not such a big shortcoming, one
can turn off cookie usage in most of the Web browsers. This
cookie problem can quite easily be solved by implementing
sessions in the same way as we implemented instances.

We introduce a new class ServletSession. Sessions specified
in the session part of the application are implemented as
subclasses of this class. Sessions all have a session identifier
which is unique for the instance it takes part in. This iden-
tifier is composed of a letter S followed by eight randomly
chosen digits.

Again, we extend Web forms with a hidden variable contain-
ing the session identifier. Since sessions are started with a
reactive pull and continued with session-oriented pulls it is
not needed to use rewritten URLs within one session: pulls
always return a Web form. Each instance contains a variable
in which the collection of its active sessions is stored.

A result of this way of implementing sessions is that parallel
sessions within one instance are automatically implemented.
However, we do have to take care that parallel sessions do
not interfere while accessing instance dependent data. This
is prevented by synchronizing data access.

Each time a servlet is called it checks whether a session iden-
tifier is passed. If so, it checks whether the session occurs in
the corresponding instance and continues the session if that
is possible. If the session cannot be found or if no session
identifier is passed, a new session is started.

4. EXAMPLE: THE GIFT SELECTION

In this section we give an example of a way to distribute
gifts over invitees for a marriage. We specify an Internet
application via which this distribution takes place. We do
not give a full specification. Instead, we give parts of the
specification which will be sufficient to get an idea of the way
in which the different part of the application are specified.

First of all, we have to specify which roles are applicable
to the problem. An initiator must specify which gifts can
be given away and who are invited for the marriage. The
invitees must be able to select a gift they want to donate
to the bridal couple. This means that we have two roles:
Initiator and Invitee.

role
Initiator;
Invitee;

end role

Next, we specify which variables and functions we make use
of. We need a variable to refer to the initiator and one to
refer to the invitees. Furthermore, the gifts (of type String)
are stored in a variable. We make use of a deadline before
which the invitees have to select the gift they want to give.

var initiator: Initiator;
var invitees: set of Invitee;
var gifts: set of String;
var deadline: Deadline;

Functions are also specified in the data part. The bodies
of the functions are specified in the Java language. We can
use the variables specified before. Variables which represent
a set are implemented as objects of the Java Vector class.
Therefore, we can make use of the methods of this class in
the bodies of the functions. Some examples of functions we
have specified are given below.

function process . selection(gifts: set of String,
gift: String): String o
=java
if (!gift.equals("") &&
(gifts.indexOf (gift)>-1)) {
gifts.removeElement (gift);
return "yes";
} else
return "no";
end java;

function gifts left(gifts: set of String): Boolean
= java
return !'gifts.isEmpty();
end java;

Next, we specify the Web pages/forms and e-mails we use
to interact with the users. We declare the kind of each
interaction and the role a user must have to interact. A
Web page/form is specified by its title and body, an e-mail
by its sender, receiver, subject and contents. We use plain
text and references to input/output parameters. A Web
form which we use to ask the initiator to insert a deadline
is given below. In the interaction, a regular expression is
added to check the syntax of the text which is typed out in
the input field. If the text does not answer the syntax, a
message is shown and the text must be altered until it does
satisfy the syntax.

session of Initiator — set_deadline(
in deadline: Deadline) =
{ title:
text: ” Gift selection”;
body:
text: "Insert deadline (dd-mm-yyyy hh:mm:ss):”;
input: deadline
check ”/-\d\d-\d\d-\d\d\d\d
\d\d:\d\d:\d\d$/”

else ”Incorrect date format.”;

A specification of an e-mail is given below. The e-mail is
sent to each invitee. He is asked to visit the application’s
URL, log in and select a gift. A “\n” specifies a line break.

mail to Invitee « invitation email(
out initiator: Initiator, out deadline: Deadline,
out invitee: Invitee, out gifts: set of String) =
{ from:
output: initiator.email;
to:
output: invitee.email;
subject:
text: ”Invitation for gift selection.”;
contents:
text: "Hello ”;
output: invitee.name;
text: ”,\n\nYou are invited to select a gift.
\n\nVisit the following url:\n\n";
output: URL;
text: "\n\nThe gifts are:\n";
output: gifts; ‘
text: ”\n\nDeadline before which you have to
select your gifts:\n”;
output: deadline;
text: "\n\nUse the following name and password
to log in:\nName:";
output: invitee.name;
text: ”\nPassword: ”;
output: invitee.password;
text: ”\n\ngreetings, ”;
output: initiator.name;

b

After specifying all interactions, we have to specify the dif-
ferent sessions. Each session has a name. A session is speci-
fied by a sequence of (inter)actions. We have to specify two
sessions.

First of all, we specify the initialization session. In this ses-
sion the initiator is asked to insert all relevant data which
is needed for the gift selection, i.e. his name and e-mail ad-
dress, the set of gifts, the set of invitees and the deadline
before which the sessions with the invitees must take place.

initialization =
{ start session of initiator — set_initiator(initiator);
while incorrect deadline(deadline) do
session of initiator — set_deadline(deadline);
od;
s = yes();
while equals yes(s) do
session of initiator —
add _invitee(invitees, invitee, s);
process_invitee(invitees, invitee);
od;
s = yes();
while equals_yes(s) do
session of initiator — add gift(gifts, gift, s);
process_gift(gifts, gift);
od;
for all j € invitees do
mail to j «
invitation email(initiator, deadline, j, gifts);
od;
end session of initiator < thank you initiator();

b

Furthermore, we specify the selection session. In such a
session an invitee is asked to select a gift. First, the invitee
has to log in using his name and password (this is indicated
by the attribute authenticate from). After selecting a gift, a
check is done. If the gift is still available it is removed from
the set of available gifts and attributed to the invitee. If it
has been attributed to another invitee a new gift must be
selected.

selection =
{ start session of invitee —
authenticate from invitees;

session of invitee — select gift(gifts, gift);

s = process_selection(gifts, gift);

while equals no(s) do
session of invitee — again select gift(gifts, gift);
s = process selection(gifts, gift);

od;

end session of invitee + thank you invitee(gift);

b

Finally, we have to specify in which order the sessions must
take place. The application starts with the initialization
session. After that, selection sessions can take place as long
as the deadline has not been reached and gifts are available
for distribution.

application

session initialization;
until deadline do
while gifts left(gifts) do
session selection;
od;
od;

end application

This example has been implemented and can be executed
as a Java Servlet. The while construction which is used in
the final part of the specification is implemented as a parallel
composition. This means that a number of selection sessions
can be executed in parallel. Since it is possible to select a
gift which, in the meantime, has been selected by another
invitee in a parallel session, we have added the check to the
selection session.

5. RELATED WORK

We introduced a specification language for a specific class of
Internet applications, viz. applications for distributed con-
sensus. There are many different languages to specify In-
ternet applications, but as far as we know, none of them is
specifically designed to develop such applications. We will
discuss some of them and show in what way they agree with
or differ from DiCons.

Closest to our work is the development of the Web-language
Mauwl, [1, 19]. This is also a language that supports inter-
action between an application and a single user, and adds
a state concept to HTML. Mawl provides the control flow
of a single session, but does not provide control flow across
several sessions (the only thing that persists across sessions
are the values of global variables). This is a distinguish-
ing feature of DiCons: interactions involving several users
are supported. On the other hand, Mawl does allow sev-
eral sessions with a single user to exist in parallel, using an
atomicity concept to execute sequences of actions as a single
action. Mawl does not use Java servlets.

Groupware is a technology designed to facilitate the work
of groups. This technology may be used to communicate,
cooperate, coordinate, solve problems, compete, or negoti-
ate. Groupware can be divided into two main classes: asyn-
chronous and synchronous groupware. Synchronous group-
ware concerns an exchange of information, which is trans-
mitted and presented to the users instantaneously by using
computers. An example of synchronous groupware is chat-
ting via the Internet. On the other hand, asynchronous
groupware is based on sending messages which do not have
to be read and replied to immediately. Examples of asyn-
chronous groupware that can be specified in DiCons are
work-flow systems to route documents through an office and
group calendars for scheduling projects. More information
on groupware can be found in [27].

Visual Oblig [3] is an environment for designing, program-
ming and running distributed, multi-user GUI applications.
Its interface builder outputs code in an interpreted language
called Oblig [5]. Unlike DiCons applications, Oblig applica-
tions do not have to run on one single server: an application
can be distributed over several so-called sites. After set-
ting up a connection, sites can communicate directly. In
this way, an application can be partitioned over different
servers. Another difference with respect to DiCons is that a
client has to install a special interpreter to view Visual Obliq
applications whereas DiCons makes use of standard client-
side techniques like HTML pages which can be viewed using
a Web browser. In [4], embedding distributed application
in a hypermedia setting is discussed and in particular how
applications generated in the Visual Obliq programming en-
vironment are integrated with the World Wide Web. Here,

a Web browser is used to refer to a Visual Obliq application,
but it must still be viewed using an interpreter.

Collaborative Objects Coordination Architecture (COCA)[21]
is a generic framework for developing collaborative systems.
In COCA, participants are divided into different roles, hav-
ing different rights like in DiCons. Li and Muntz [20] used
this tool to build an online auction. A COCA Virtual Ma-
chine runs at each client site to control the interactions be-
tween the different clients. On the other hand, any client
connected to the Internet can communicate with a DiCons
application without having to reconfigure his machine.

The Describing Collaborative Work Programming Language
(DCWPL) [7] helps programmers to develop customizable
groupware applications. DCWPL does not concern the com-
putational part of an application. As in DiCons, this part
is specified in a computational language like Java, Pascal
or C**. A DCWPL application also runs on an interpreter,
here called control engine. DCWPL is based on synchronous
groupware in contrast to DiCons in which the asynchronous
aspect is more important.

Further, there are languages that allow to program brows-
ing behaviour. These, for instance, allow to program the
behaviour of a user who wants to download a file from one
of several mirror sites. For so-called Service Combinators
see [6, 18]. A further development is the so-called ShopBot,
see [8].

Our implementation is based on existing Internet program-
ming techniques, viz. Java servlets and HTML. In Udell’s
book on groupware [27] an Internet vote is implemented us-
ing a Java servlet. Also in [24] an election servlet is pre-
sented. Furthermore, there are commercial voting servlets
put on the market. One of them can be found at [9]. To set
up an Internet auction one can use commercial software like
rAuction, which can be found at [26].

Other useful Internet programming techniques are Active
Server Pages (ASP) [15] and Java Server Pages (JSP) [13].
We can extend these techniques with customized tags for dis-
tributed consensus. However, these techniques are library-
based and therefore not as suitable for formal verification as
our language-based DiCons technique.

6. CONCLUSIONS

We designed a language that supports the development of
Internet applications at the right level of abstraction. Al-
though we have done several experiments with the language,
we plan to gain more experience, by using the language for
larger applications. This will probably show options for re-
fining and extending DiCons. Sample specifications of a vot-
ing system, an auction system and a Meeting Scheduler al-
ready indicated some useful extensions. We mention: atomic
regions (to support mutual exclusion, as in Mawl [1, 19]),
database coupling (for processing information available at
the system, as in Strudel [10]), and style sheets (to give the
Web forms a more professional appearance).

Since the communications with the users of the system are
under dynamic control, based on the system state, DiCons
supports personalized and adaptive interactions.

Our choice to base DiCons and its support tools on exist-
ing and readily available Internet technology, makes it very
easy to use. Nevertheless, the language and tools can be
easily extended to support more advanced communication
schemes.

One of the motivations for designing DiCons was that it
would allow for the development of formally verified Inter-
net applications. Therefore we prefer a language-based ap-
proach to a library-based approach. Up to now, we have not
gained experience with formal verification of DiCons pro-
grams. Current research is focussed on finalizing the formal
semantics for the behavioral part of DiCons and to experi-
ence with formal validation based on this semantics.

We implemented a compiler to compile DiCons specifica-
tions into Java Servlets. Except for generating a Servlet,
the compiler checks a specification on its syntax and static
semantics.

More information on DiCons, its compiler and some working
examples can be found in {2] or at http://pc32.eesi.tue.nl/.

7. REFERENCES

[1} D. L. Atkins, T. Ball, G. Bruns, and K. Cox. Mawl: A
domain-specific language for form-based services.
IEEFE Transactions on Software Engineering,
25(3):334-346, May/June 1999. Special Section:
Domain-Specific Languages (DSL).

[2] H. v. Beek. Internet protocols for distributed
consensus — the DiCons language. Master’s thesis,
Eindhoven University of Technology, Aug. 2000.

[3] K. Bharat and M. H. Brown. Building distributed,
multi-user applications by direct manipulation. In
Proceedings of the ACM Symposium on User Interface
Software and Technology, Groupware and 3D Tools,
pages 71 -81, 1994.

[4] K. Bharat and L. Cardelli. Distributed applications in
a multimedia setting. In Proceedings of the First
International Workshop on Hypermedie Design, pages
185-192, Montpellier, France, 1995.

[5

L. Cardelli. Obliq A language with distributed scope.
SRC Research Report 122, Digital Equipment, June
1994.

[6] L. Cardelli and R. Davies. Service combinators for
web computing. IJEEE Transactions on Software
Engineering, 25(3):309-316, May/June 1999.

[7] M. Cortes and P. Mishra. DCWPL: A programming
language for describing collaborative work. In
Proceedings of ACM CSCW’96 Conference on
Computer-Supported Cooperative Work, Language
Support for Groupware, pages 21-29, 1996.

[8] R. B. Doorenbos, O. Etzioni, and D. S. Weld. A
scalable comparison-shopping agent for the world-wide
web. In W. L. Johnson and B. Hayes-Roth, editors,
Proceedings of the First International Conference on
Autonomous Agents (Agents’97), pages 39-48, Marina
del Rey, CA, USA, 1997. ACM Press.

(9}

(10]

(11]

(12]

[13]
(14]
(15]

(16]

(7]

(18]

[19]

Virtua -- fastvote support, 1997 -1999.
http://www.virtua.com/fastvote/, Virtua
Communications Corporation.

M. Fernandez, D. Suciu, and I. Tatarinov. Declarative
specification of data-intensive Web sites. ACM
SIGPLAN Notices, 35(1):135-148, 2000.

J. Friedl and A. Oram. Mastering Regular
Expressions: Powerful Techniques for Perl and Other
Tools (O’Reilly Nutshell). O'Reilly & Associates, Inc.,
first edition, Jan. 1997.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Java Series. Addison-Wesley,
second edition, June 2000.

M. Hall. Core Servlets and JavaServer Pages. Sun
Microsystems Press/Prentic Hall PTR, June 2000.

N. Heinle and R. Koman. Designing with JavaScript.
O’Reilly & Associates, Inc., May 2000.

A. Homer, D. Sussman, and B. Francis. Professional
Active Server Pages 8.0. Wrox Press Inc, Sept. 1999.

J. Hunter and W. Crawford. Javae Servlet
Programming. O’Reilly & Associates, Inc., 981
Chestnut Street, Newton, MA 02164, USA, 1998.

ITU-TS. ITU-TS Recommendation Z.120: Message
Sequence Chart (MSC). ITU-TS, Geneva, 1997.

T. Kistler and H. Marais. WebL. — a programming
language for the Web. Computer Networks and ISDN
Systems, 30(1-7):259-270, Apr. 1998.

D. Ladd and J. Ramming. Programming the web: An
application-oriented language for hypermedia service
programming. In Proc. 4th WWW Conf.,, WWW
Consortium, pages 567--586, 1995.

20]

(21]

(22]

(23]

(24]

(25]

(26]
(27]

28]

D. Li and R. Muntz. Building online auctions from the
perspective of coca. Submitted to HICSS-33, Jan. 2000.

D. Li and R. R. Muntz. COCA: Collaborative objects
coordination architecture. In Proceedings of ACM
CSCW’98 Conference on Computer-Supported
Cooperative Work, Infrastructures for Collaboration,
pages 179-188, 1998.

S. Mauw, M. Reniers, and T. Willemse. Message
Sequence Charts in the software engineering process.
In Handbook of Software Engineering and Knowledge
Engineering, S.K. Chang, editor. World Scientific,
2001. To appear.

Metamata home page: Javacc documentation.
http://www.metamata.com/JavaCC/docs/, Fremont,
California.

L. O’Brien. Vox populi. Java Pro Magazine, June
1999.

D. Raggett, A. L. Hors, and I. Jacobs. Html 4.01
specification. Technical report, W3C User Interface
Domain Recommendation, Dec. 1999.

Siteoption home page. http://www.siteoption.com/,
SiteOption.com, Green Cove Springs, USA.

J. Udell. Practical Internet Groupware. O’Reilly &
Associates, Inc., Oct. 1999.

A. Williamson. Special Edition Using Java Servlet
API Que Corporation, Indianapolis, IN, USA, 1997.

6.2 Performance Evaluation of Integrated-Services Networks: Sem Borst
CWI, Amsterdam / Eindhoven University of Technology, e-mail: Sem.Borst@cwi.nl

Introduction

The world of communications is experiencing an era of fascinating development. Over the past
decade, the Internet has been expanding at an unprecedented rate, in terms of traffic volume,
the number of users, as well as the range of applications. Initiated as an eccentric computer
network used by a niche community, the Internet has transformed into a massive communication
and information medium which has captured a central role in society. The use of wireless services
has been showing equally turbulent growth. In just a few years, mobile phones have evolved from
impractical devices into popular gadgets which have found ubiquitous usage.

The success of the Internet and the proliferation of wireless services have raised extremely high
expectations for their future evolution. Network operators strongly anticipate further expansion,
fueled by the advance of all-optical networking as well as the convergence of wireless and Inter-
net access, along with a fundamental trend towards service integration. The future Internet is
expected to accommodate a variety of new services with more stringent Quality-of-Service re-
quirements than the current data applications. Next-generation wireless networks are designed
to support new high-rate data applications, in addition to the voice calls and messaging services
which are the dominant source of traffic in current systems. Eventually, these developments are
believed to result in the consolidation of a wide variety of services on a common platform.

Streaming versus elastic traffic

The integration of several services on a single infrastructure offers significant operational advan-
tages. Besides the inherent scaling efficiencies, a second benefit lies in the greater flexibility.
History shows how difficult it is to predict the popularity of future applications with any degree
of certainty. In view of the intrinsic uncertainty, network operators prefer to install a network
infrastructure which can support a wide range of services.

While offering potential synergies, however, the co-cxistence of heterogeneous services also raises
several challenging problems. Different applications may not only have drastically different traffic
characteristics, but also extremely diverse Quality-of-Service requirements. In order to describe
the most fundamental differences, it is convenient to make a broad distinction between streaming
traffic and elastic traffic. Streaming traffic is produced by audio and video applications for both
real-time communication and reproduction of stored sequences (or ‘traces’). Elastic traffic, on the
other hand, results from the transfer of digital documents such as Web pages, files, e-mails, where
the transmission rate is adaptable depending on the levels of congestion in the network. Thus, the
rate and duration are measures of Quality-of-Service, as opposed to intrinsic characteristics of the
traffic as in the case of streaming applications.

Within the category of streaming traffic, one can also draw a distinction whether the transmission
rate is approximately constant over time or highly fluctuating. In case of voice traffic for example,
fixed-size packets are transmitted at fixed time intervals, producing a constant bit stream. In
encoded video, however, the bit rate may vary significantly, depending on the amount of activity
in the scenes. In both these cases, Quality-of-Service is mainly determined by the integrity of the
original signal. Thus, it is crucial that the signal is not distorted as the packets flow through the
network, making small packet delay and low loss crucial Quality-of-Service requirements. For elas-
tic traffic, on the other hand, it is not so much the delay of individual packets that is important,
but the total transfer delay of the document that determines the Quality-of-Service as perceived
by the users.

Clircuit-switched versus packet-switched networks

Current public telephone networks have been highly customized for carrying voice traffic, and pro-
vide only limited capabilities for supporting data applications. Specifically, commercial telephone

21

systems are designed as circuit-switched networks, which means that the transmission capacity of
each link is (logically) divided into several circuits. A call occupies exactly one circuit on each of
the links on the path from origin to destination.

A circuit-switched network is perfect for carrying homogeneous constant-rate traffic, such as voice.
It is less ideal for supporting heterogeneous or variable-rate traffic, such as video or data. To ac-
commodate non-uniform and time-varying rate requirements, it is necessary that the transmission
capacity is not statically partitioned into fixed chunks, but rather can be flexibly shared among
various users. This has motivated the design of packet-switched networks such as the Internet,
where users can freely adjust the transmission rate by varying the number of packets transmitted
per unit of time. The packets are then transported as individual entities through the network,
and multiplezed with packets from other users.

Connection-oriented versus connection-less networks

Within the category of packet-switched networks, one can draw a further distinction. In a
connection-oriented network, an explicit connection is set up before any packet is transmitted.
Once the connection has been set up, all the packets are labeled with a unique connection-identifier
used by the switches in the network for packet forwarding. A major example of a connection-
oriented packet-switching technology is ATM (Asynchronous Transfer Mode), which was pushed
by the telephone industry as the technology of choice for building multi-service networks. Not
surprisingly therefore, the ATM ‘philosophy’ resembles that of current telephone networks, and
inherited concepts, if only in name, as virtual circuit.

In contrast, in a connection-less network there is no explicit notion of a connection, although
conceptually one can still think of a connection in relation to user behavior. All packets are
treated as separate entities containing complete address information used by the routers for packet
forwarding. The most prominent example of a connection-less packet switching technology is IP
(Internet Protocol).

There are various trade-offs associated with both approaches. Typically, the set of active connec-
tions is significantly smaller than the set of potential addresses of end hosts. As a result, stamping
a connection-identifier on a packet introduces less overhead than adding the complete network
address of the receiver. As a related advantage, the table look-up involved in packet forwarding
is usually much faster in a connection-oriented network than in a connection-less network. The
downside of the connection-oriented approach lies in the substantial amount of overhead involved
in setting up a connection, which is only compensated for by the higher forwarding capacity in
case of long transfers. The majority of the transfers in the Internet however are extremely short,
e.g. a mouse click, consisting of just one packet.

Traffic control mechanisms

There are also less tangible but perhaps more important differences related to traffic control issues.
Broadly speaking, a connection-oriented approach is well-suited for centralized traffic control by
the network, whereas a connection-less approach relies on distributed control by the users. For
example, the connection set-up in a connection-oriented network includes an admission control
procedure to check if there are sufficient resources available before a connection is admitted.
In addition, the connection-identifier allows the switches in the network to distinguish between
packets of various connections, and use policing and discriminatory scheduling algorithms.

The inability to recognize connections in a connection-less network leaves limited scope for admis-
sion control or packet scheduling. Instead, the users must adapt their transmission rates based on
congestion feedback signals provided by the routers.

Queueing theory

As described above, packet delay, packet loss, and blocking probabilities are crucial Quality-of-
Service measures. Queueing theory provides a useful paradigm for evaluating such performance
characteristics. The basic queueing model consists of a single resource (representing a link in
a communication network) which provides service (transmission) to randomly arriving requests
(packets or calls). The randomness of the traffic process reflects the stochastic fluctuations and

22

the intrinsic uncertainty in the transmission behavior of the traffic sources.

In the remainder of paper, we give a (selective) overview of the use of queueing-theoretic mod-
els and techniques in evaluating the performance characteristics of communication networks. In
Section 6.2, we describe some classical blocking models, which provide a useful framework for
capacity planning and traffic engineering in circuit-switched networks. In Section 6.2, we review
some canonical queueing models, which play a central role in examining various performance is-
sues in packet-switched networks. Both types of models also arise in the performance evaluation
of wireless networks, where the air-interface and user mobility create an additional degree of
complexity.

Blocking models

In this section, we discuss a few representative blocking models. Blocking (or loss) models offer
a useful methodology for designing and evaluating the performance of circuit-switched networks.
For further background we recommend [11], [12], [13], [22].

Erlang-B model

The classical loss model consists of a single link with a capacity of C circuits. Calls arrive as
a Poisson process of rate A, and have independent and exponentially distributed holding times
with mean 1/u. Define p := A/u as the amount of offered traffic. Each call requires exactly one
circuit for the duration of the holding time. An arriving call that finds all circuits occupied, is
blocked. Blocked calls are assumed to be lost (as an alternative, retrial models explicitly account
for redialing phenomena).

The number of busy circuits (i.e. the number of calls in progress) behaves as a stochastic process N
with a birth-death structure. The equilibrium distribution of N is determined by

n
Pr{N:n}:F_]'prr, n=20,1,...,C,

n!

C o,
with F = Z '-0-7 denoting a normalization constant. In particular, the probability that all circuits
n!
n=0
are occupied at an arbitrary epoch in equilibrium is

C
c P
B:Pr{N:C}:F*l% = 7?&;;’ (1)
D P
= n!

Because of the ‘PASTA’ property (Poisson Arrivals See Time Averages) [30], this is also the
probability that an arriving call finds all circuits occupied, i.e., the blocking or loss probabil-
ity. Remarkably enough, the above equilibrium distribution in fact applies for any holding-time
distribution with mean 1/, which is referred to as insensitivity.

The above model is known as the Erlang-B model (B for blocking) or Erlang loss model, named
after the Danish mathematician A.K. Erlang who introduced the model in the early 20th century
for evaluating blocking probabilities (i.e. the probability of a busy signal) in telephone exchanges.
Equation (1) gives the blocking probability B as a function of the link capacity C and the offered
traffic p. In Quality-of-Service provisioning, one is primarily interested in the inverse relation.
For example, what is the minimum capacity Cm;, that is required in order to achieve a certain
target blocking probability B for a given amount of traffic p? Or, what is the maximum amount
of traffic pmax that can be supported for given capacity C, without exceeding a certain blocking
threshold B? Typical design values for B are on the order of 10~2 — 10~3. These inverse problems
may be efficiently solved using recursive and convexity properties of the expression in (1).

23

Multi-class Erlang-B model

In the above model, we considered homogeneous traffic. In multi-service networks, connections
may have distinct characteristics, in terms of holding-time distributions or capacity requirements.
The above model may be extended to heterogeneous traffic as follows. Consider a single link of C
circuits, which is offered traffic from K classes. Class-k calls arrive as a Poisson process of rate A,
and have independent and exponentially distributed holding times with mean 1/, £ =1,..., K.
Define py := Ax/pr as the offered traffic associated with class-k calls. Each class-k call requires
by circuits for the duration of the holding time. If an arriving class-k call finds less than b free
circuits, then it is blocked.

Denote by (N1, ...,Ng) the link occupancy at an arbitrary epoch in equilibrium, with Ny, repre-

K
senting the number of class-k calls in progress. Define S := {(n1,...,nk) : >, bgng < C} as the
k=1

set of feasible link occupancies. Then

K o,
- p
Pr{(Ny,...,Ng) = (n1,...,ng)} =G™* ﬁ, (ny,...,ng) €5,
k=1 k:
K T
with G = “k_ denoting a normalization constant.
S T1% denoring

(n1,...,ng)ES k=1
Unfortunately, the numerical evaluation of the normalization constant G is not a routine exercise.
The cardinality of the set S, and hence the number of terms in the summation, grows rapidly with C
and K. Therefore, a brute-force evaluation of G is prohibitively demanding for all but the smallest
values of C and K. Sophisticated Monte-Carlo methods have been devised for evaluating G in a
computationally efficient manner.
The blocking probability for class-k calls may be expressed as

C

By = Z i,

i=C—bp+1

with m; denoting the probability that exactly ¢ circuits are occupied at an arbitrary epoch in
equilibrium. The probabilities 7; may be obtained through summation of the link occupancy
probabilities, which however implicitly contain the complicated normalization constant G. The
Kaufman-Roberts recursion provides an alternative for calculating the probabilities m; directly
through a simple recurrence relation, bypassing the numerical evaluation of G. In addition, ad-
vanced asymptotic techniques have been proposed for approximating the blocking probabilities B;,.
Not surprisingly, the blocking probability By is higher for classes with larger capacity require-
ments by, since larger values of by induce a more stringent admission criterion. The discrepancy
in blocking probabilities may be undesirable from a performance perspective. Trunk reservation
provides a simple scheme for removing the bias, using class-defined parameters ¢;,...,tx, with
the interpretation that an arriving class-k call is only admitted if there are at least by + t free
circuits (or ‘4runks’). Taking values ty = T — by levels the admission criterion for all classes, and
hence equalizes the blocking probabilities.

Instead of removing undesirable bias, a trunk reservation strategy may also be used to actively
discriminate among calls of various classes by setting higher trunk reservation values for low-
priority calls. It turns out that essentially any degree of differentiation in the blocking probability
may be achieved by using even relatively small trunk reservation parameters.

Loss networks

In the above model, we allowed for heterogeneous traffic, but still focused on just a single link. Any
practical communication network consists of several links, with connections requiring capacity on
each of the links of a path from origin to destination. The above model may be generalized to a
network setting as follows. Consider a network consisting of L links, with the I-th link comprising

24

C) circuits, which is offered traffic from M classes. Class-m calls arrive as a Poisson process of
rate Am, and have independent and exponentially distributed holding times with mean 1/u,,.
Define pr := Am/pm as the offered traffic associated with class-m calls. Each class-m call re-
quires by, circuits on link [for the duration of the holding time, ! = 1,..., L. Thus, a class defines
a set of capacity requirements on each of the links in the network. If an arriving class-m call finds
less than by, free circuits on some link [, then it is blocked. A typical example is by, = by, for all
l € Lm,and by, =0 for all | € L,,, with £,, representing the route set of class-m calls, by which
we mean the collection of links traversed on the path from origin to destination.

Denote by (N,...,Njs) the network occupancy at an arbitrary epoch in equilibrium, with N,,
M
representing the number of class-m calls in progress. Define S := {(ns,...,n M) Y b, <
m=1
Ciforalll=1,...,L} as the set of feasible network occupancies. Then
M piim
PI‘{(Nl,...,NM) = (nl,.. ,’I’LM)} =H! H l'—, (nl,...,nM) € S,
Np!
m=1
M o
with H .= Z H EL"—' denoting a normalization constant. Note the striking similarity

(R1y.,npm)eSm=1

with the equilibrium distribution for the multi-class Erlang-B model, with the intricacies of the
network structure entirely encapsulated in the set S. Again, the numerical evaluation of the
normalization constant is not a trivial task, which has motivated the construction of fixed-point
approximations for the blocking probabilities.

In a network context, trunk reservation serves an additional purpose in supplementing the routing
algorithm. In the above model, we tacitly assumed a fized routing mechanism, where the route
between origin and destination is fixed. An alternative is a dynamic routing algorithm, where
the route is dynamically selected, based on the current load conditions in the network. Evidently,
a dynamic routing algorithm may produce an improvement in performance by balancing the
load more efficiently across the network. However, a dynamic routing mechanism is potentially
vulnerable to a rather subtle, self-propelling phenomenon which may cause severe performance
degradation. The selection of longer and longer routes in overload conditions wastes capacity,
which may result in bi-stability, with the network oscillating between two operating regimes.
Trunk reservation provides an effective mechanism to prevent the route lengths from spiraling
upward in overload situations by denying access to non-direct calls.

Queueing models

In this section, we highlight a few characteristic queueing models. Queueing models play a crucial
role in analyzing various performance measures in packet-switched networks. For further back-
ground material we refer to [10], [23], [27], [31].

Traffic hierarchy

In order to describe traffic processes in packet-switched networks, it is helpful to adopt a three-level
hierarchy, consisting of the packet level, the burst level, and the flow level. The flow level (or call
or connection or session level) is the highest level, where user sessions are initiated and terminated,
although that may not be explicitly signaled in connection-less networks. The packet level (or cell
level in case of fixed-size packets) is the lowest level, where individual packets are transmitted. The
burst level is an intermediate level, which arises when traffic has bursty characteristics, meaning
that packets tend to be generated in clumps, as is usually the case in packet-switched networks.
For example, in a phone call, activity periods (talk spurts), or bursts, each consisting of a sequence
of back-to-back packets, alternate with silence periods (pauses). During a web session, the user
may click on several items, each of which triggers the transmission of a group of packets to deliver
the requested information.

25

Typically, the above hierarchy induces a separation of time scales. The call-level dynamics evolve
at a relatively slow time scale, e.g. minutes to hours. The packet-level dynamics occur at an
extremely fast rate, e.g. milli to micro-seconds. The burst level corresponds to some intermediate
time scale, but may also be close to either the packet or call level.

The M/G/1 queue

The M/G/1 queue consists of a single resource or server, which handles service requests from
arriving customers. Along with several variants, the M/G/1 queue is by far the most intensively
studied queueing model. Customers arrive as a Poisson process of rate A, and require generally
distributed service times B with mean (! and second moment 3(®). Define p := A3 as the
traffic intensity. For stability, we assume that p < 1 so that the server is able to handle all
the traffic. An arriving customer that finds the server idle, is taken into service immediately.
Otherwise, the customer waits for service. Customers are served in order of arrival, which is also
known as the First-Come First-Served (FCFS) discipline.

The above representation M/G/1 is the Kendall notation which provides a useful convention for
the systematic classification of queueing models, named after the English mathematician Kendall.
The Kendall notation has the form A/B/C/D, with the A indicating the interarrival time distri-
bution (M for the Memoryless property of the Poisson process), the B denoting the service time
distribution (with G standing for general), C for the number of servers, and an optional fourth
field D defining the number of waiting positions (assumed infinite unless specified otherwise).
Due to the memoryless property of the Poisson process, the queue length N (including the customer
in service) observed just before departure epochs evolves as a Markov chain. Denote by E[zN] the
probability generating function (PGF) of the equilibrium distribution of N. The notion of a PGF
may seem somewhat obscure, but provides an extremely convenient ‘calculus’ for manipulating
with (sums of independent) discrete random variables. At the same time, the PGF contains all the
relevant information regarding the distribution of the random variable. In particular, the mean
of the random variable may be obtained by differentiating the PGF, and setting z = 1. Higher
(generalized) moments of the random variable may be determined by considering higher-order
derivatives.

Now observe that there is a simple relation between the queuc length at two successive departure
epochs: the queue length increases by the number of arrivals during the service time, minus one,
unless the first departure left the system empty. This recurrence relation may be used to derive

that
BN = (L= = 2800~ 2))
BA1-2)) -2 ’
|z| <1, with
B(s) := E[e~*B] = / =" dPr{B < t}
t=0

denoting the LST of the service time distribution. LST’s may be viewed as the conceptual coun-
terparts of PGF’s for continuous random variables with similar convenient properties. Because
of an up- and down-crossing argument and the PASTA property mentioned earlier, N is also the
queue length at an arbitrary epoch in equilibrium. Differentiating w.r.t. z, and setting z = 1, we
find that the mean queue length at an arbitrary epoch in equilibrium is

A23(2)
Note that p is the fraction of time that the server is busy, and hence the mean number of customers
in service. Thus, the mean number of waiting customers in equilibrium, excluding the customer
in service, is
A23(2)

EL:§(1—_I)—).

26

The mean waiting time EW of an arbitrary customer is related to EL via
EL = AEW, (2)
yielding the Pollaczek-Khintchine formula

A3
BW = 20—y 3)
which is one of the classical results in queueing theory.

The above formula conveys two fundamental insights. First of all, the mean waiting time increases
steeply as the traffic intensity p approaches 1. Second, for given arrival rate A and mean service
time (1), the waiting time increases with the variability of the service time as measured by the
second moment 3(2). These two insights in fact apply in a much broader context.

The relation (2), known as Little’s law or Little’s formula, [16], is one of the most fundamental
and celebrated results in queueing theory. It establishes a universal relation between the mean
number of customers in a system, the mean amount of ¢ime the customers spend in the system,
and the arrival rate into the system. A simple heuristic proof of Little’s result proceeds as follows.
Suppose that every customer in the system pays 1 euro per unit of time. Then the mean amount
of revenue per unit of time may be evaluated as AEW, but may equivalent be expressed as EN.
Note that this argument does not involve any particular property of the M/G/1 queue, and it is
not surprising therefore that Little’s result applies in a very general setting.

Extensions to the M/G/1 queue

As evidenced by the above analysis, the M /G/1 queue admits a detailed analysis of several crucial
performance measures. Unfortunately, however, the applicability of the M/G/1 queue in analyzing
packet-level performance is somewhat limited. As described earlier, packets usually arrive in an
extremely bursty fashion, rather than as a Poisson process as in the M /G/1 model. Thus, in order
to examine packet-level performarnce, one needs to consider more complicated arrival models, such
as compound Poisson processes, Markov-modulated models, or even more general models such as
Batch Markovian Arrival Processes (BMAP’s). These models may be viewed as generalizations of
the M/G/1 queue, and can be numerically analyzed using matrix-analytic techniques, see [17], [18]
for further details.

The M/G/1 queue is better suited for investigating flow-level performance issues. At the flow or
burst level, it is usually not unreasonable to assume a Poisson arrival process. However, the order
of service at the flow or burst level is typically not First-Come First-Served, but better modeled
by the Processor Sharing (PS) discipline, meaning that all present flows receive an equal share of
the capacity [19]. In that case, the waiting time is not a meaningful performance measure, since
an arriving flow does not wait, but starts to receive service immediately. Instead, one can consider
the mean transfer delay or sojourn time of an arbitrary flow, which is given by

_ g(l)
ET = s (4)

If we compare the above formula with that for the mean waiting time in case of FCFS, then
there are two immediate observations. As before, the mean delay increases sharply as the traffic
intensity approaches 1. However, for given arrival rate A and mean service time BM) | the variability
of the service time has no longer any effect on the mean delay. This insensitivity property is quite
crucial, as we will see later.

Fluid queues

Fluid queues provide a versatile approach for modeling bursty traffic processes. Suppose that
one focuses on the burst level in the traffic hierarchy described earlier. At that time scale, the
flow-level dynamics evolve relatively slow, and the number of active flows is nearly static. On

27

the other hand, the packet-level dynamics occur extremely fast, and the stream of packets may
approximately be viewed as continuous fluid. This elegant concept has created a strong interest
in fluid models as a paradigm for capturing burst-level traffic phenomena.

A classical fluid queue may be described as follows [2]. Consider a link of unit rate, fed by the
superposition of N stochastically identical independent On-Off sources. Each source alternates
between exponentially distributed On-periods with parameter p, and exponentially distributed
Off-periods with parameter A. During an On-period, a source generates traffic at some constant
rate r. Thus, the mean rate is p := Ar/(A+ p). In order for the queue to be stable and non-trivial,
we assume Np < 1 < Nr. Denote by V the buffer content at an arbitrary epoch in equilibrium.
Then

P
Pr{V >z} = Zaie_c"z,
i=1

with a1,...,ap and (i,...,(p positive coeflicients.

The above model was introduced to describe packetized voice traffic, with the On-periods modeling
talk spurts, and the Off-periods corresponding to silence periods. In addition, On-Off sources
provide a popular (approximate) model for describing the ‘worst-case’ output of traffic shaping
devices such as leaky buckets. The model may be extended to include several activity levels or
activity periods with a general Markovian structure [26], as would be suitable to characterize
encoded video.

Asymptotic results

In Quality-of-Service provisioning, one is typically interested in extremely small probabilities (typ-
ical design values for packet loss fractions are on the order of 1076 — 107?), or systems with an
extremely large population of users. Although such dimensions complicate a conventional queueing
analysis, they usually facilitate the derivation of accurate asymptotic results using large-deviations
techniques, in particular the computation of effective bandwidths (6], [8], [14], [25].

Consider N stochastically identical independent traffic sources sharing a link of rate C = N¢
endowed with a buffer of size B = Nb. Thus, the coefficients b and c represent the the link rate
and buffer size per source, respectively. Denote by V4, the buffer content per source as a function
of N and ¢. The above scaling was first proposed in [28]. Let A(t) be a random variable repre-
senting the amount of traffic generated by an individual source in a time interval of length ¢. Let
ay(s) := } log E[e*A()] be the log-moment generating function of A(t), and let af(s) = tlgxolo oy (s).
There are two relevant asymptotic regimes, (i) ‘large-buffer’ (large-b) asymptotics, and (ii) ‘many-
sources’ (large-IN) asymptotics.

Large-buffer asymptotics
Here, the size of the buffer is scaled up, while the number of sources is held fixed. It may be shown
that

) 1
Jim o log Pr{Viy > b} = —n(c),
with 9
n(e) = sup{6 e > X0y,
which suggests the following approximation for large values of b,

Pr{V§ > b} ~ e Nbn(e),

The above approximation may be used for admission control purposes. A typical Quality-of-
Service requirement is that the probability of buffer overflow does not exceed some small value ¢,
which is ensured if Pr{V$, > b} < €. Using the above approximation, the latter constraint may be
translated into n(c) > 48, or equivalently, ¢ > ¢(8)/4, with 6 := —log(e)/Nb. Hence, ¢(6)/6 may be
interpreted as the effective capacity requirement, or effective bandwidth per source. Even though
the microscopic traffic activity varies over time, the notion of effective bandwidths allows one to

28

treat the capacity requirements at a macroscopic scale as constant for the purpose of admission
control.

Many-sources asymptotics

Here, the number of sources grows large, while the amount of buffer space per flow remains
constant. It may be shown that

. 1 c _
Jim SPr{Vg > b} = —y(5,0),

with
7(8,6) 1= fnf supls(b -+ ct) — tax(s)),

which suggest the following approximation for large values of N,
Pr{V% > b} m e~ NV(be),

In this case, the effective bandwidth per source may be calculated as ¢ > sup inf ['tl (g - 1) + "‘T(s)]
t>0 8
for certain 4. It turns out that the notion of effective bandwidth generally remains valid when

heterogeneous sources are multiplexed, so that the admissible region can be described through a
simple linear constraint, exactly as in the blocking models discussed earlier. Thus, the notion of
effective bandwidths allows the arsenal of techniques developed for circuit-switched models to be
used in examining call-level performance issues in packet-switched networks.

Queues with heavy tails

Over the past few years, empirical findings have triggered a strong interest in fluid queues with
non-Markovian activity periods. Extensive measurements have shown that bursty traffic behavior
may extend over a wide range of time scales, and manifest itself in self-similarity and long-range
dependence (3], [15], [21], citeWillinger. Self-similarity means that the traffic process shows fractal
behavior, and looks similar when observed on various time scales. Long-range dependence is a
closely related phenomenon implying that correlations extend over long time periods. The occur-
rence of these phenomena is commonly attributed to heavy-tailed characteristics in the activity
patterns. For example, several studies have suggested that file sizes typically follow a Pareto dis-
tribution [9], which means that the tail probabilities exhibit relatively slow polynomial decay, i.e.
Pr{S >z} ~az™" as z — oo. A typical value that is quoted is v & 1.7, which implies that the first
moment exists, but that the second moment is infinite! It turns out that queues with heavy-tailed
activity periods behave fundamentally different from queues with traditional light-tailed traffic
processes, where the tail probabilities decay at an ezponential rate, i.e., Pr{S > z} ~ bz * as
T — oo. We refer to [7], [20], [24] for further details. The exact asymptotics for fluid queues with
heavy-tailed On-periods were recently obtained in [5], [32].

Although the occurrence of heavy-tailed traffic characteristics is widely acknowledged, the practical
implications for network performance remain a matter of debate. If we consider the Pollaczek-
Khintchine formula (3), then we find that the mean delay in an M /G/1 queue with FCFS is infinite
when the second moment of the service time is infinite. However, if we look at formula (4) for the
mean delay in case of Processor Sharing, then the second moment of the service time has no effect.
Thus, we can immediately conclude that the service discipline plays a crucial role in assessing
the impact of heavy-tailed traffic characteristics. The insensitivity property which we observed in
blocking models suggests that the effect of heavy-tailed traffic also depends on the buffer size and
what performance measure is considered. Detailed results on the role of scheduling in assessing
the impact of heavy-tailed traffic may be found in (1], [4].

References

(1] Anantharam, V. (1999). Scheduling strategies and long-range dependence. Queueing Systems
33, 73-89.

29

[2] Anick, D., Mitra, D., Sondhi, M.M. (1982). Stochastic theory of a data-handling system with
multiple sources. Bell Syst. Techn. J. 61, 1871-1894.

[3] Beran, J., Sherman, R., Taqqu, M.S., Wilinger, W. (1995). Long-range dependence in
variable-bit-rate video traffic. IEEE Trans. Commun. 43, 1566-1579.

[4] Borst, S.C., Boxma, 0.J., Jelenkovi¢, P.R. (2000). Reduced-load equivalence and induced
burstiness in GPS queues with long-tailed traffic lows. CWI Report PNA-R0016. Submitted
for publication.

[5] Borst, S.C., Zwart, A.P. (2000). A reduced-peak equivalence for queues with a mixture of
light-tailed and heavy-tailed input flows. SPOR-Report 2000-04, Eindhoven University of
Technology. Submitted for publication.

[6] Botvich, D.D., Duffield, N.G. (1995). Large deviations, the shape of the loss curve, and
economies of scale in large multiplexers. Queueing Systems 20, 293-320.

(7] Boxma, O.J., Dumas, V. (1998). Fluid queues with heavy-tailed activity period distributions.
Computer Communications 21, 1509-1529.

[8] Courcoubetis, C., Weber, R.R. (1996). Buffer overflow asymptotics for a buffer handling many
traffic sources. J. Appl. Prob. 33, 886-903.

[9] Crovella, M., Bestavros, A. (1996). Self-similarity in World Wide Web traffic: evidence and
possible causes. In: Proc. ACM Sigmetrics ’96, 160-169.

[10] Gross, D., Harris, C.M. (1985). Fundamentals of Queueing Theory (John Wiley & Sons, New
York).

[11] Kelly, F.P. (1979). Reversibility and Stochastic Networks (John Wiley & Sons, Chichester).

[12] Kelly, F.P. (1986). Blocking probabilities in large circuit-switched networks. Adv. Appl. Prob.
23, 473-505.

[13] Kelly, F.P. (1991). Loss networks. Ann. Appl. Prob. 1, 319 -378.
[14] Kelly, F.P. (1991). Effective bandwidths at multi-service queues. Queueing Systems 9, 5-16.

[15] Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V. (1994). On the self-similar nature
of Ethernet traffic (extended version). IEEE/ACM Trans. Netw. 2, 1-15.

[16] Little, J.D.C. (1961). A simple proof of L = AW. Oper. Res. 9, 383-387.

[17] Neuts, M.F. (1981). Matriz Geometric Solutions in Stochastic Models (John Hopkins Univer-
sity Press, Baltimore).

[18] Neuts, M.F. (1990). Structure of Stochastic Matrices of M/G/1 Type and Their Applications
(Marcel Dekker, New York).

[19] Ndfiez Queija, R. (2000). Processor-Sharing Models for Integrated-Services Networks. PhD
Thesis, Eindhoven University of Technology.

[20] Park, Willinger, W. (eds.) (2000). Self-Similar Network Traffic and Performance Evaluation
(John Wiley & Sons, New York).

[21] Paxson, V., Floyd, S. (1995). Wide area traffic: the failure of Poisson modeling. IEEE/ACM
Trans. Netw. 3, 226-244.

[22] Ross, K.W. (1995). Multiservice Loss Models for Broadband Telecommunication Networks
(Springer, Berlin).

30

(23] Shwartz, A., Weiss, A. (1995). Large Deviations for Performance Analysis: Queues, Commu-
nication, and Computing (Chapman & Hall, London).

[24] Sigman, K. (ed.) (1999). Queueing Systems 33. Special Issue on Queues with Heavy-Tailed
Distributions.

[25] Simonian, A., Guibert, J. (1995). Large deviations approximations for fluid queues fed by a
large number of on/off sources. IEEE J. Sel. Areas. Commun. 13, 1017-1027.

(26] Stern, T.E., Elwalid, AL (1991). Analysis of separable Markov-modulated rate models for
information-handling systems. Ady. Appl. Prob. 23, 105-139.

[27] Walrand, J. (1988). An Introduction to Queueing Networks (Prentice Hall, Englewood Cliffs
NJ).

(28] Weiss, A. (1986). A new technique of analyzing large traffic systems. Adv. Appl. Prob. 18,
506—-532.

[29] Willinger, W., Taqqu, M.S., Sherman, R., Wilson, D.V. (1997). Self-similarity through high-
variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Trans.
Netw. 5, 71-86.

[30] Wolff, R.W. (1982). Poisson arrivals see time averages. Oper. Res. 30, 223-231.

[31] Wolff, R.W. (1989). Stochastic Modeling and the Theory of Queues (Prentice Hall, Englewood
Cliffs NJ).

[32] Zwart, A.P., Borst, S.C., Mandjes, M. (2000). Exact asymptotics for fluid queues fed by mul-
tiple heavy-tailed On-Off flows. SPOR Report 2000-14, Eindhoven University of Technology.
Shortened version in: Proc. IEEE INFOCOM 2001, to appear.

31

6.3 VerifiCard A European Project for Smart Card Verification: Bart
Jacobs, Hans Meijer and Erik Poll

Computing Science Institute, University of Nijmegen
{Bart.Jacobs,Hans.Meijer,erikpoll}@cs.kun.nl http://www.verificard.org

Abstract

The next generation of smart cards will be used for services where security is a key issue.
Reliability and trust are necessary for a large scale adoption and success of these smart cards.
New validation techniques are needed, based on well-defined mathematical models, using
special tools for mathematically proving correctness, going well beyond testing. A EU-funded
consortium ‘VERIFICARD' of 5 academic and 2 industrial partners, coordinated by Nijmegen,
will work on the correctness of crucial components of the chosen (JAVACARD) platform and
of individual applications. This brief note will give an introduction to smart cards and their
importance in computer science today. Additionally, it will give an impression of the work
done in Nijmegen on these topics.

Introduction

Smart cards are small devices carrying a computer chip. They come in various shapes: plastic
cards in the form of credit cards (used as, for instance, electronic purses) or SIM-cards in mobile
telephones.

The next generation of smart cards will be used for services where security is a key issue, like au-
thenticated access to computer networks, e-commerce, m-commerce, high value wire-less (GSM-
or UMTS-based) services, loyalty programs and digital signing. The correct functioning of these
cards must be absolutely guaranteed. Potentially malicious application programs must be iden-
tified. A virus on a smart card is a nightmare scenario. Therefore, new validation techniques
are needed, based on well-defined mathematical models, using special tools (theorem provers and
model checkers) for mathematically proving correctness, going well beyond testing.

This offers both a challenge and an opportunity to the field of formal methods in general, and
of JAVA-program verification in particular, as the leading smart card platform — J AVACARD - is
based on JAVA. The challenge is to show that formal verification techniques are applicable to
practical programs, in a real-life context, and thus may develop from an academic discipline into
an industrially relevant field. The opportunity follows from the fact that smart cards are still
small enough to bring their software within the reach of modern verification tools.

This is a very important point. The formalization, specification and verification of the JAVACARD
platform is certainly not a trivial task, yet the platform is small enough to make a complete formal
treatment feasible. Moreover, since smart cards are mass-produced and open to any kind of attack,
the smart card industry as well as the card issuers have a profound interest in an error-free and
secure implementation of the platform and its applets. This makes JavaCARD a unique chance for
formal methods to prove their importance for the software industry. For a comprehensive overview
of applications of formal methods to JAVACARD and smart cards, see [Har00].

JavaCard

Smart cards contain a microprocessor chip which can execute small application programs called
applets. The cards that are in use today feature a single applet, written in machine code, which
is ‘burnt’ in ROM and therefore fixed forever. In contrast, the new generation of smart cards can
hold several applets in their memory at the same time (“multi-application”), and new applets can
be downloaded after the cards have been issued (“post-issuance”), allowing services to be updated
or new services to be added without replacing the card. Moreover, applets are not written in
machine code specific to the particular chip used, but are written in a high-level language which
is compiled to byte code that is interpreted by a virtual machine on the smart card.

The amount of memory available on smart cards is rather restricted, typically in the order of
10 kilobytes. It consists of a ROM containing a run-time environment, persistent updateable

32

memory (such as EEPROM) for information which has to be preserved when power is removed,
and transient memory for temporary workspace.

A card is used by inserting it in (or bringing it sufficiently close to) a smart card reader. This
smart card reader will generally be an input/output device of some computer system, which
communicates with the card’s system by exchanging byte sequences called Application Protocol
Data Units (APDUs). An APDU may contain an order to select a certain applet, or an order for
the currently selected applet. The card responds with APDUs containing results, error messages,
etc. This and other aspects of smart cards are standardized in ISO 7816.

Applets are written in a high level language and are designed to run on a standardized open
platform. The applets for smart cards can be programmed in a language JAVACARD, which is a
simplified version of the popular language JAVA. JAVACARD, like JAvA, is owned by Sun, but is
freely available and described in open standards.

There are currently three standards for smart cards: JAvACARD!, MultOS, and Windows for
Smart Cards. JAVACARD is the most open standard, with its specifications publicly and freely
available. All currently operational implementations of multi-application cards use the Java-
CARD platform, and all major players in the smart card market are producing JAVACARD-based
products. MultOS is slowly moving in the direction of JAVACARD. Windows for Smart Cards is
developed by Microsoft. Altogether, the choice for JAVACARD seems obvious.

The JAVACARD language is a subset of JAvA developed with the limited memory and computation
power of smart cards in mind. For instance, it only supports the types byte, short, and optionally
int with their basic operations, but not double and £ loat, and only allows one-dimensional arrays.
It supports most control flow constructs, as well as exception throwing and catching. However,
its Application Programming Interface (API) is quite small, see below.

‘The source code of a JAVACARD applet is translated into byte code by a standard Java compiler.
The resulting byte code is checked by a byte code verifier to verify certain properties related to
e.g. typing, and to see that the applet only uses features supported by JAVACARD. Since JAva
byte code contains redundant information (which for instance enables full reverse-compilation),
and JAVACARD applets should be as small as possible, the byte code is further converted by a cap
converter into a Converted Applet (CAP-file), which is the form loaded and installed on the card.

Java Java
source compiler byte code

o sl CAP file
converter

An applet’s CAP file is interpreted by the JAVACARD Virtual Machine (JCVM). The JCVM
resides in the card’s ROM, together with the JAVACARD Run-time Environment (JCRE), which
is an implementation of the JAvACARD API, and the applets which are loaded when the card is
manufactured. One of these applets may be designed to load and install post-issuance applets into
persistent memory.

Applets are separated from each other by a firewall mechanism. No object created by one applet
can be accessed by a different applet, unless such access is explicitly requested and granted, via a
so-called shareable object.

Whenever the card is powered-up in a card reader it is reset to a consistent state. In order to
preserve consistency, all updates of persistent memory are subject to a begin/commit /abort-
transaction mechanism.

Altogether, the JAVACARD API currently comprises 18 classes for exceptions, 16 interfaces for
working with cryptographic keys and only 10 fundamental classes. Among the latter are a class
APDU for communication with the card reader, classes PIN and OwnerPIN for working with PIN-
codes, an abstract class Applet for applets, and a class JCSystem, which contains methods for
transaction handling and for handling requests for object sharing between applets maintaining the
applet firewall.

For general background information on smart cards, see [HNSS00], and for more specific informa-
tion on JAVACARD, see [Che00].

!See the URL of the JAVACARD Forum http://www.javacardforum.org

33

Formal methods for smart cards in VerifiCard

The VERIFICARD project will work on formalization of the JAVACARD platform (mainly: what is
on the card) and of applets, in several different ways.

Platform specification and verification providing formal descriptions of the full JAvACARD
smart card platform, starting from the open JAVACARD standards. This formalization in-
cludes that of the JAVACARD language, virtual machine and run-time environment (API)
and is used to develop and formally establish the soundness of several components of the
JAVACARD platform, in particular the byte code verifier and cap converter, and possibly
also the compiler. It is also needed as a basis for techniques of applet verification.

Since the existing informal specification of JAVACARD is partly given at source code level
and partly at byte code level, the platform specification and verification will be done at both
levels.

At the source code level, a formal operational semantics of the JAVACARD language and API
will be provided, for proving the compiler correct. As an axiomatic semantics (Hoare logic)
is better suited to proving logical (safety) properties of applets using theorem provers, such
a semantics is provided as well. The soundness and completeness of the axiomatic semantics
w.r.t. the operational one will be proved.

At the byte code level, a formalization of the JCVM will be provided, and in doing so,
a formal operational semantics of JAvAa byte code. This formalization will be used for a
verification of the compiler, and the construction of a certified byte code verifier and cap
converter.

Applet specification and verification developing methods and tools for the validation of as-
pects of applets, in particular security aspects. The applets run on the JAVACARD platform,
and therefore these methods need to be based on the platform formalisation.

Different styles of specification will be explored, namely logic methods using Hoare logic and
algorithmic methods using temporal logic, in order to investigate the types of problems for
which they are best suited. The case studies provided by the industrial partners will drive
this exploration (instead of looking for problems which are well solved by a chosen method).

The algorithmic methods will be based on an operational semantics at byte code level. A
JAvACARD Temporal Logic Specification Language will be developed which should take
care of typical aspects of JAVACARD like object sharing and firewalls, transactions, tran-
sient objects, etc. Three techniques for the verification of such aspects will be considered:
compositional proof techniques (allowing to specify and verify applets individually), abstract
interpretation and model checking.

The logic methods will be based on an axiomatic semantics at source code level. A JAva-
CARD Interface Specification Language will be developed which is similar to a subset of
JML described below. Three approaches to verification are investigated: verification at the
syntactic level and at the semantic level, the latter with and without using a representation
of the global object store. For verification at the semantic level applets are translated into
the logic of some theorem prover, using the LOOP-tool described below.

Applications applying and testing the techniques developed in the other parts, in particular
using realistic case studies supplied by industrial partners and members of the End-User
Panel.

In particular a banking case study and a mobile communication (GSM) case study will
be developed which will include examples of hostile applets to be detected as such by the
methods and tools developed earlier. Also, a set of security properties will be provided
which are to be verified by these methods and tools. As a further application, the API will
be verified using the specitication developed earlier.

34

In the project 5 academic and 2 industrial partners participate. The academic partners are the
University of Nijmegen (the project coordinator), INRIA in France, the Technical University of
Munich, the University of Hagen in Germany and SICS, the Swedish Institute of Computer Science.
The industrial partners are the French companies Gemplus and Bull, who are both deeply involved
in the development of (JAVACARD) smart cards.

The project also has an End User Panel representing different industries with an interest in
smart card security. The End User Panel currently consists of TNO (The Netherlands), Deutsche
Telekom, France Telecom, Setec Oy (Finland), Trusted Logic (France), IBM Zurich, INTEGRI
(Belgium) and Ericsson (Sweden).

At source code level, Munich will work on the operational and axiomatic semantics of JAVACARD.
Nijmegen and Hagen will develop a complete formal specification of the JAVACARD API, which
ideally should become a standard reference. All this will form the basis for the specification and
verification of JAVACARD applets at source code level using theorem provers by Nijmegen, Hagen,
and INRIA. Here Nijmegen will use the LOOP-tool — discussed in more detail below -, Hagen will
use the Jive tool developed there, and INRIA will use Cogq.

At byte code level, INRIA, Munich, and Gemplus will work on formalisation of the J AVACARD
virtual machine and a certified byte code verifier. INRIA will also develop a certified cap-converter,
and Munich will start work on a certified compiler. The formalisation of the virtual machine
will be used by INRIA and SICS for verification of JAVACARD applets at byte code level using
modelchecking, abstract interpretation, and compositional proof techniques.

The Java Modelling Language (JML)

Since new applets can be downloaded to the new generation of cards, card issuers are very worried
about controlling which applets are allowed on their cards. They can use digital signatures to
ensure that only applets that they signed can be installed. But this leaves them with the problem
that they want to know for sure that their applets behave correctly. This leads to old-fashioned
program verification, which, these days, is done with modern (verification) tools and formal spec-
ification languages. This is the topic that Nijmegen (and also Hagen and INRIA) will work on
within the VERIFICARD consortium.

The LOOP-group in Nijmegen (see [Loop]) uses the behavioural specification language for Java
called JML [LBR99b, LBR99a]. JML is designed primarily by Gary Leavens in cooperation with
Compaq SRC and Nijmegen. We give a brief account of its features without going into any detail.
JML is designed to specify the behaviour of JAvA classes and interfaces and their objects. The
basic idea is that pre- and postconditions be specified for each method of a class, and an invariant
for the class as a whole, which describes properties of the class’ fields, but may be considered as
an additional pre- and postcondition for the class’ methods.

One may specify several ‘behaviours’ for a method. Each behaviour has a precondition given as a
requires-clause and a postcondition given as an ensures-clause. A behaviour may have additional
clauses, like a modifiable-clause which specifies (non-local) variables which may be changed in
that behaviour, or a signals-clause with a condition, which indicates that the behaviour may
result in throwing an exception when that condition holds. A behaviour may be qualified as
‘normal’, in which case it should return normally, or ‘exceptional’, in which case it should signal
an exception. JML knows many other qualifying modifiers.

The invariants and pre- and postconditions are written as (Boolean) expressions in standard
JAava-syntax, extended with various constructs like forall and exists. The reason for choosing
standard syntax is to encourage J AVA-programmers to specify their code as they write it. Exten-
sions include quantifiers and set comprehension, logical implication, a pseudo-variable \result
indicating a method’s returned value, and more such pseudo-variables and pseudo-operators like
\old: the pre-value of a modifiable variable v may be referred to in postconditions as \old (v).
A specification may use model fields, i.e. specification-only variables, e.g. to capture implicit
variables whose values could be inferred from explicit JAVA variables. The initial value of such
model fields may be specified. A specification may also directly call methods of ‘pure’ classes, i.e.
without side effects. This allows for the abstraction of (mathematical) details in a JAVA setting.

35

/*@ behavior
(¢] requires: src != null && srcOff >= 0 &&
src0ff+length <= src.length &&
dest != null && destOff >= 0 &&
dest0ff+length <= dest.length &&
length >= 0;
modifiable: dest[dest0ff..destOff+length-1],
TransactionException.systemInstance.reason;
ensures: \forall (short i) O <= i &% i < length
==> dest[dest0ff+i] == \old(src[srcOff+i]);
signals: (TransactionException e)
e.getReason() == TransactionException.BUFFER_FULL;

e 0 000D

Qx/
public static final native short arrayCopy{(byte[] src,
short srcOff,
byte[] dest,
short destOff,
short length)
throws ArrayIndex0OutOfBoundsException,
NullPointerException,
TransactionException;

Figure 1: JML specification for arrayCopy from Util

Specifications are written in separate files or embedded in JAVA code as special comments.

As an example, a JML specification of a method ArrayCopy of the JAVACARD API class Util is
given in Fig. 1. The intended behaviour of arrayCopy(src, srcOff, dest, destOff, length)
is to copy the items from src[src0ff..srcOff+length-1] to dest [destOff. .destOff+length-1].

A subtle point is the need for \old(...) in the ensures clause, i.e. the postcondition, of the
arrayCopy method. This is needed to correctly specify the behaviour in the case that aliasing
occurs, i.e. the case that src == dest. We have to refer to the original entries of the src array
in the postcondition. The informal (javadoc) specifications of the JAVACARD API explicitly state
that this is what happens if src and dest are aliases.

The TransactionException that may be thrown by arrayCopy is typical for JAVACARD, and may
arise because of the limited available resources on smart cards. It may occur when an overflow
arises in a special transaction buffer that is used to enable rollback of operations in case of failure
(e.g. when the card is prematurely removed from the card reader.) Further examples of JML
specifications for classes from the JavaCard API are discussed in [PBJ00, PBJO1].

Specifications as those in Fig. 1 provide a basis to formally prove that a given method implemen-
tation (e.g. in an applet, possibly involving an arrayCopy) satisfies its specification. Especially
the modifiable clauses are useful to control the side-effects that applets can have (and thus the
possible damage that they can do).

The LOOP-tool

The LOOP-tool (where LOOP stands for Logic of Object Oriented Programming) is developed
in Nijmegen, partly in cooperation with the Technical University of Dresden. It translates JML-
programs (i.e., JAVA programs annotated with JML-specifications as outlined above) into a de-
scription of their semantics in the higher-order logic used by the theorem provers PVS and Is-
abelle/HOL, see [BJ00]. In fact, a JAvA-class is modelled as a co-algebra [JR97, Rei95, Jac99]
mapping a state into a sum of products of JAvA types and the state space. The theorem provers
PVS or Isabelle/HOL can then be used that JAVA-programs meet their JML-specifications. This

36

is a non-trivial, highly interactive activity for which a special tailor-made Hoare logic has been
developed [JP00]. The first steps in the verification of JML-annotated JAVA-programs using the
LOOP tool are described in {BJPO1).

Summary

The JAVACARD platform offers a unique opportunity for formal methods to show their value for
real-life software development: the platform is non-trivial but not too large, and an error-free and
secure implementation is of vital importance not only for the smart card industry and card issuers,
but also for society at large.

The VERIFICARD project aims to provide methods and tools for the complete specification and
verification of applets written for the JAVACARD platform used in next-generation smart cards.
To this end the project will develop

e a formalization of

— the JAVACARD language at source level, by an operational semantics and an axiomatics
semantics, and of the JAVACARD Application Programming Interface (API)
— the JAVACARD Virtual Machine, giving an operational semantics of the JAVACARD
byte code level
* certified tools for developping JAVACARD programs, including

— a byte code verifier
— a cap converter
— a JAVA compiler

¢ methods and tools for the specification and verification of applets, at byte code level and
source code level, using theorem proving, abstract interpretation, and model checking.

These formalizations, specifications and verification methods will be evaluated using non-trivial
characteristic case studies (and the reference implementation of the JAvACARD API).

References

[BJOO] J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. Techn. Rep.
CSI-R0019, Comput. Sci. Inst., Univ. of Nijmegen. To appear at TACAS’01., 2000.

[BJPO1] J. van den Berg, B. Jacobs, and E. Poll. Formal Specification and Verification of
JavaCard’s Application Identifier Class. In I. Attali and T. Jensen, editors, Proceedings
of the JavaCard Workshop, LNCS. Springer, 2001.

[Che00] Z. Chen. Java Card Technology for Smart Cards. The Java Series. Addison-Wesley,
2000.

(HNSS00] U. Hansmann, M.S. Nicklous, T. Schick, and F. Seliger. Smart Card Application De-
velopment Using Java. Springer, 2000.

[Har00] P. Hartel. Formalising Java safety — An overview. In J. Domingo-Ferrer, D. Chan, and
A. Watson, editors, Fourth Smart Card Research and Advanced Application Conference
(CARDIS’2000), pages 114-134. Kluwer Acad. Publ.; 2000.

[Jac99] B. Jacobs. Coalgebras in specification and verification for object-oriented languages.
Newsletter 3 of the Dutch Association for Theoretical Computer Science (NVTT), 1999.

[JP00] B. Jacobs and E. Poll. A logic for the Java Modeling Language JML. Techn. Rep.
CSI-R0018, Comput. Sci. Inst., Univ. of Nijmegen. To appear at FASE’01., 2000.

37

[JR97)

[LBR992]

[LBR99b]

[Loop]
[PBJOO]

[PBJO1]

[Rei95)]

B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin,
62:222-259, 1997.

G.T. Leavens, A.L. Baker, and C. Ruby. JML: A notation for detailed design. In
H. Kilov and B. Rumpe, editors, Behavioral Specifications of Business and Systems,
pages 175-188. Kluwer, 1999.

G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Techn. Rep. 98-06, Dep. of Comp. Sci., Iowa
State Univ. (http://www.cs.iastate.edu/~1leavens/JML.html), 1999.

Loop Project. http://www.cs.kun.nl/~bart/L0O0P/.

E. Poll, J. van den Berg, and B. Jacobs. Specification of the JavaCard API in JML.
In J. Domingo-Ferrer, D. Chan, and A. Watson, editors, Smart Card Research and
Advanced Application, pages 135-154. Kluwer Acad. Publ., 2000.

E. Poll, J. van den Berg, and B. Jacobs. Formal specification of the JavaCard API in
JML: the APDU class. Comp. Networks Mag., 2001. To appear.

H. Reichel. An approach to object semantics based on terminal co-algebras. Math.
Struct. in Comp. Sci., 5:129-152, 1993.

38

