Nieuwsbrief van de
Nederlandse Vereniging voor Theoretische Informatica

Jan Willem Klop, Jan Rutten, Susanne van Dam (redactie) *

Inhoudsopgave

1

2

Van de Redactie
Samenstelling Bestuur

Van de voorzitter
NVTI Lifetime Achievement Award

Theoriedag 2004
Mededelingen van de onderzoekscholen

Wetenschappelijke bijdragen
Approximations through relaxations

Gerhard J. Woeginger
Domain Independent Hierarchical Clustering

Rudi Cilibrasi
Improving the Quality of Protocol Standards:

Correcting IEEE 1394.1 FireWire Net Update

Judi Romign e,

Ledenlijst

Statuten

*CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands. Email: susanne@cwi.nl.

12

12

19

23

31

42

1 Van de Redactie

Beste NVTI-leden,

Graag bieden wij u hierbij het achtste nummer aan van de jaarlijkse NVTI-Nicuwsbricf. Bij het
samenstellen hebben we weer de formule van de vorige zeven nummers gevolgd. Zo vindt u naast
het programma van de jaarlijkse Theoriedag en de bijgewerkte ledenlijst ook weer enkele bijdragen
van collega’s met cen korte inleiding in hun speciale gebied van expertise. Evenals voorgaande
jaren zouden deze Nicuwsbrief en de Theoriedag nict tot stand hebben kunnen komen zonder de
financiele steun van onze sponsors: NWO-EW, Elsevier Publishing Company, en de onderzoek-
scholen IPA en SIKS. Namens de NVTI gemeenschap onze hartelijke dank voor deze middelen die
ons voortbestaan mogelijk maken!

De redactie,

Jan Willem Klop (jwk@cwi.nl)

Jan Rutten (janr@cewi.nl)

Susanne van Dam (susanne @cwi.nl)

2 Samenstelling Bestuur

Prof.dr. J.C.M. Baeten (TUE)

Dr. H.L. Bodlaender (UU)

Prof.dr. J.W. Klop (VUA/CWI/KUN) voorzitter
Prof.dr. J.N. Kok (RUL)

Prof.dr. J.-J.Ch. Meyer (UU)

Prof.dr. G.R. Renardel de Lavalette (RUG)
Prof.dr. G. Rozenberg (RUL)

Prof.dr. J.J.M.M. Rutten (CWI/VUA) sccretaris
Dr. L. Torenvliet (UvA)

3 Van de voorzitter

Geacht NVTI-lid,

Ook dit jaar heeft het Bestuur zich beijverd om een interessante Theoriedag te organiseren, met
prominente sprekers uit binnen- en buitenland. De Theoriedag zal gehouden worden op vrijdag 5
maart, in Hoog-Brabant, Utrecht. We hopen en vertrouwen crop dat het programma voor velen
van 11 weer interessant is. Graag tot ziens op 5 maart in Utrecht!

Jan Willem Klop, voorzitter NVTI

NVTI Lifetime Achievement Award

On Monday, June 30, a special event in the ICALP conference at the TUE was organized, with
a two-fold purpose. One was the presentation of the EATCS Lifetime Achieverment Award to
Grzegorz Rozenberg, from the hands of Mogens Nielsen and Jan van Lecuwen. The other was the
presentation of the NVTI Lifetime Achicvement Award to N.G. (Dick) de Bruijn, from the hands
of Jan Willem Klop. The text of the laudatio for the latter is included below.

LAUDATIO for N.G. (Dick) de Bruijn

June 30, 2003,
Eindhoven

Introduction. ‘NVTT is de Nederlandse Vereniging voor Theoretische Informatica, the Dutch
Association for Theoretical Computer Science. Tt is my task and my pleasure to present Professor
de Bruijn, on behalf of the NVTI, with an Award and a Present, symbolizing our recognition
and gratitude for his everlasting and profoundly influential contributions to theoretical computer
science. This laudatio is an attempt of highlighting some of the achievements of Professor de
Bruijn.

First some numbers and statistics. Nicolaas Govert de Bruijn, or shorter, Dick de Bruijn,
was born July 9, 1918, which will be next week 85 years ago. He studied mathematics at Leiden
University from '36 to '41 and wrote a Ph.D. thesis at the Vrije Universiteit Amsterdam on modular
functions. His career started as a rescarcher at Philips Rescarch Laboratory in Eindhoven from
'44 to ’46. He was professor of mathematics at the TUD (’46-’52), then at the UVA (’52-60), then
since 1960 at the TUE. Two more numbers: he wrote over 200 papers, the first onc in 1937.

Mathematics. This occasion is not primarily meant to deal with his mathematical achieve-
ments, but rather those in theoretical computer science. Nevertheless, his mathematical work will
have been in some sense a preparation for the later work in computer science, leading up to it
and sctting the stage. De Bruijn worked in many arcas, number theory, analysis, combinatorics.
I remember learning as a student in a course on combinatorics the beautiful counting theorem of
De Bruijn and Polya. But, I'm not qualified to discuss De Bruijn’s mathematical achievements.

Applied type theory. Barendregt has explained to me that de Bruijn is to be considered as the
founding father of ‘applied type theory’. In 1968 de Bruijn started his cclebrated AUTOMATH
project, originally meant for the verification of mathematical texts. Notably, the book on ana-
lysis by Landau was verified and found correct, but for one mistake. Later, it turned out that
AUTOMATH had a much wider scope.

With AUTOMATH, de Bruijn was far ahead of his time, at least a decade. This had some
disadvantages. One is the lack of recognition and understanding that the early Automath project
encountered sometimes. The other technical disadvantage was that computers were much inferior
to what they are now.

The AUTOMATH project had a tremendous impact both on the applied side as well as on
the foundational or theoretical side. On the applied side the project delivered the first working
system (in 1969) for proof checking, on the basis of dependent types, the Curry-Howard-de Bruijn
isomorphism, and the calculus of definitions (PAL). De Bruijn had the crucial insight that typed
lambda calculi can be the basis for verification systems. Two of the calculi in Barendregt’s lambda
cube arc members of the AUTOMATH family of calenli, and the designers of the most genceral
system in this cube, Coquand and Huet, refer to de Bruijn as the inspration for their ideas.
The initial lack of rccognition is nowadays replaced by a gencral world-wide recognition of the
pioncering role of the AUTOMATH project.

Throughout the years De Bruijn has developed AUTOMATH further with numerous ideas and
devices. One such idea was his introduction of namecless dummies in lambda calculus (1973), or
so-called the Bruijn indices, that solves the perennial problem of renaming bound variables in a
deceptively simple and straightforward way. The Bruijn indices are now completely standard in
the literature of categorical combinatory logic, and of explicit substitution calculi. This family of
calculi is since the past say ten or twelve years extensively investigated but the first calculus of
explicit substitution dates according to Lescanne, from a note by de Bruijn, the CA&g¢-calculus of
1972.

There was the notion of telescopes and segments, a precursor to a treatment of context calculi.

Other achievements. De Bruijn’s achievements did not stay restricted to the strategic most
important AUTOMATH work. There was much more.

Crystallography and the theory of quasi-crystals. Everyone has scen the beautiful inher-
ently nonperiodic tilings of the planc, discovered by Penrose. De Bruijn gave a deep analysis
of their properties by pentagrids. It turned out that his work was not merely in the area of
recreational mathematics, but was of direct relevance in crystallography.

By the way, de Bruijn made also many contributions to the less serious area of recreational
mathematics, analyzing games like Solitaire and many more.

Term rewriting. One area were [was a close witness to an achievement of Professor de Bruijn
was term rewriting. After a survey lecture that I had given here in Eindhoven, with Dick de Bruijn
in the audience, he sent me a day later a letter with a ten page typescript, that had remained in
his drawers for over ten years with the question whether the theorem had any interest. The note
gave a marvellous strong lemma in abstract rewriting, generalizing several known lemma’s about
confluence, a ‘master theorem’. The insight had a strong combinatorial nature, not surprisingly.
De Bruijn’s lemma was further developed by van Qostrom, and the resulting theorem of decreasing
diagrams of De Bruijn and van Qostrom will be without doubt a standard theorem in future
textbooks.

Biological memory and the conscious mind. Finally, two more less well-known achieve-
ments of de Bruijn should be mentioned. One is his work on modeling biological memory and
the conscious mind. The other concerns Mathematical Vernacular, an enterprise, together with
Rob Nederpelt, that again follows in a coherent way from de Bruijn’s earlier work. Mathematical
vernacular is in between natural language and formalized language, and important in interaction
between computer and humans. I would not be surprised if the future will show that also in these
cendeavours Dick de Bruijn was ahead of his times.

This brings me to the Award that symbolically expresses the recognition of our community
for de Bruijn’s groundbreaking work in so many arcas of theoretical computer scicnce. The award
is accompanicd by a Present. This present is an artistic rendering of what may be the most
important datatype in de Bruijn’s work (after natural numbers), namely a tree. It is the tree of
Pythagoras, designed by emeritus professor in mathematics Koos Verhoeff. It was manufactured
by Hans dec Koning, Eindhoven. Its branches symbolize the branching out of De Bruijn’s many
interests. The tree is non-periodic. Further observations about this tree are best left to Professor
Dick de Bruijn.

4 Theoriedag 2004

Theoriedag 2004 van de NVTI
(Nederlandse Vereniging voor Theoretische Informatica)

Vrijdag 5 maart 2004
Vergadercentrum Hoog Brabant, Utrecht

Het is ons cen genocgen u uit te nodigen tot het bijwonen van de Theoriedag 2004 van de NVTI,
de Nederlandse Vereniging voor Theoretische Informatica, die zich ten doel stelt de theoretische
informatica te bevorderen en haar beoefening en toepassingen aan te moedigen. De Theoriedag
2004 zal gehouden worden op vrijdag 5 maart 2004, in Vergadercentrum Hoog Brabant te Utrecht,
gelegen in winkelcenrum Hoog Catherijne, op enkele minuten loopafstand van CS Utrecht, en is
een voortzetting van de reeks jaarlijkse bijeenkomsten van de NVTI die negen jaar geleden met
de oprichtingsbijeenkomst begon.

Evenals vorige jaren hebben wij een aantal prominente sprekers uit binnen- en buitenland bereid
gevonden deze dag gestalte te geven met voordrachten over recente en belangrijke stromingen in
de theoretische informatica. Naast ecn wetenschappelijke inhoud heeft de dag ook cen informaticf
gedeelte, in de vorm van een algemene vergadering waarin de meest relevante informatie over de
NVTI gegeven zal worden, alsmede een presentatie door dr. M. Kas (NWOQO/ EW), die informatie
zal verstrckken over de diverse subsidieprogramma’s van NWO voor de informatica.

Programma (samenvattingen volgen beneden)

9.30-10.00: Ontvangst met koffie
10.00-10.10: Opening
10.10-11.00: Lezing Prof.dr. U. Schoening (University of Ulm)
Titel: Algorithms for satisfiability testing
11.00-11.30: Koffie
11.30-12.20: Lezing Dr. P. Gruenwald (CWI)
Titel: Two theories of information: Shannon & Kolmogorov
12.20-12.50: Lezing Dr. M. Kas (NWO/EW)

Titel: De omgekeerde wereld. Over de informaticaplannen van het NWO-gebied
Exacte Wetenschappen.

12.50-14.10: Lunch (Zic beneden voor registratic)
14.10-15.00: Lezing Prol.dr. S. Abramsky (University of Oxford)
Titel: A Categorical Semantics of Quantum Protocols.
15.00-15.20: Thee
15.20-16.10: Lezing Prof.dr. J. van Benthem (UvA, Stanford University)
Titel: Games, logic and computation
16.10-16.40: Algemene ledenvergadering NVTI

Lunchdeelname

Het is mogelijk aan cen georganiseerde lunch deel te nemen; hicrvoor is aanmelding verplicht. Dit
kan per email of telefonisch bij Susanne van Dam (susanne@cwi.nl, 020-592 4189), tot een week
voor de bijeenkomst (27 februari). De kosten kunnen ter plaatse voldaan worden; deze bedragen
ongeveer Furo 14. Wij wijzen erop dat in de onmiddellijke nabijheid van de vergaderzaal ook
uitstekende lunchfaciliteiten gevonden kunnen worden, voor wie niet aan de georganiseerde lunch
wenst deel te nemen.

Lidmaatschap NVTI

Alle leden van de voormalige WTT (Werkgemeenschap Theoretische Informatica) zijn automatisch
lid van de NVTI geworden. Aan het lidmaatschap zijn geen kosten verbonden; u krijgt de aan-
kondigingen van de NVTI per email of anderszins toegestuurd. Was u geen lid van de WTI en
wilt u lid van de NVTI worden: u kunt zich aanmelden bij Susanne van Dam (susanne@ewi.nl),
met vermelding van de relevante gegevens (naam, voorletiers, affiliatic indien van tocpassing,
correspondentieadres, email, URL, telefoonnummer).

Steun

De activiteiten van de NVTI worden mede mogelijk gemaakt door de ondersteuning (financieel
en anderszins) van de volgende instellingen: NWO/EW, CWI, Onderzoeksscholen TPA en SIKS,
Elsevier Science B.V.

Samenvattingen van de lezingen

Algorithms for Satisfiability Testing
Spreker: Uwe Schoening (University of Ulm)

Despite its NP-completeness, designing good satisfiability testing algorithms (SAT solver) has a
lot of practical applications. Such SAT solvers use various heuristics which make them hard to
analyze theoretically. We present a couple of theoretically well understood algorithms for k-SAT.
It was especially realized during the last years that certain probabilistic algorithms can have better
running times than the best known deterministic ones.

Two Theories of Information: Shannon & Kolmogorov
Spreker: Peter Grunwald (CWT)

We introduce, compare and contrast the theories of Shannon information and Kolmogorov com-
plexity. We investigate the extent to which these theories have a common purpose and where
they are fundamentally different. We discuss the fundamental relations ‘entropy = expected Kol-
mogorov complexity’ and ‘Shannon mutual information = expected algorithmic information’. We
show how ‘universal coding/modeling’ (a central idea in practical data compression) may be viewed
as a middle ground between the two theories, and how it leads to the ‘minimum description length
principle’, a practically useable theory for statistical inference with arbitarily complex models.
(Joint work with P.M.B. Vitanyi.)

A Categorical Semantics of Quantum Protocols
Spreker: Samson Abramsky (University of Oxford, joint work with Bob Coccke)

We study quantum information and computation from a novel point of view. We show how the
cssential structures found in key quantum information protocols such as tcleportation, logic-gate
teleportation, and entanglement-swapping can be captured at the abstract level of compact-closed
categories with biproducts. This abstract and structural point of view opens up new possibilities
for describing and reasoning about quantum systems. It also shows the degrees of axiomatic
freedom: we can show what requirements are placed on the (semi)ring of ‘scalars’ C(I, I), where C
is the category and I is the tensor unit, in order to perform various protocols such as teleportation.
Our formalism captures both the information-flow aspect of the protocols, and the branching due
to quantum indeterminism. This contrasts with the standard accounts, in which the classical
information flows are ‘outside’ the usual quantum-mechanical formalism.

Games, logic and computation
Spreker: Johan van Benthem (UvA, Stanford University)
http://staff.science.uva.nl/"johan/

Games are a natural model for interaction and communication. Logic and games go well together,
witness the widespread use of ‘logic games’ for argumentation, semantic evaluation, or model
comparison. But the connection runs more deeply. Logic provides a natural fine-structure to
game theory. In particular, both strategic and extensive game forms look like models that logicians
are used to in studies of actions, knowledge, and belief revision. We will show how key issues in
analyzing games link up with recent work in modal logics of knowledge, communication and action.
Our examples are (a) reasoning about strategic equilibrium, (b) information update during a game,
(¢) revision of expectations about the future.

Literature

1999 - ... “Logic in Games”, electronic lecture notes, ILLC Amsterdam & philosophy Stanford
(occasional paper versions).

2001A, ‘An Essay on Sabotage and Obstruction’, ILLC Amsterdam. To appear in D. Hutter ed.,
“Festschrift for Joerg Siekmann”, Springer Verlag.

2001B, ‘Dynamic Epistemic Logic’, “Bulletin of Economic Research” 53:4, 219-248 (Proceedings
LOFT-4, Torino).

2002A, ‘Extensive Games as Process Models’, in M. Pauly & P. Dekker, eds., special issue of
“Journal of Logic, Language and Information” 11, 289-313.

2002, ‘Onc is a Lonely Number: on the logic of communication’, Tech Report PP-2002-27, ILLC

Amsterdam. To appear in P. Koepke et al. eds., “Colloquium Logicum, Muenster 2001”,
ASL Publications, Providence.

2003, ‘Rational Dynamics and Epistemic Logic in Games’, in S. Vannucei, cd., “Logic, Gamc
Theory and Social Choice III”, University of Siena, department of political cconomy, 19-23.

See also the ILLC Preprint server for a bunch of recent papers on the interface of logic and game
theory.

5 Mededelingen van de onderzoekscholen

www.win.tue.nl/ipa/

Institute for Programming research and Algorithmics

The research school IPA (Institute for Programming Research and Algorithmics) educates re-
searchers in the field of programming research and algorithmics. This field encompasses the study
and development of formalisms, methods and techniques to design, analyse, and construct software
systems and components. TPA has three main research areas: Algorithmics & Complexity, Formal
Methods, and Software Technology. Researchers from eight universities (University of Nijmegen,
Leiden University, Technische Universiteit Eindhoven, University of Twente, Utrecht University,
University of Groningen, Vrije Universiteit Amsterdam, and the University of Amsterdam), the
CWI and Philips Research (Eindhoven) participate in IPA.

In 1997, IPA was formally accredited by the Royal Dutch Academy of Sciences (KNAW). In
2002, this accreditation was extended for a period of five years.

Activities in 2003

IPA has two multi-day events per year, the Lentedagen and the Herfstdagen, which focus on
a particular subject. In the 2002 - 2006 period, each of the Herfstdagen will be dedicated to
one of IPA’s four so-called application areas: Networked Embedded Systems, Security, Intelligent
Algorithms, and Compositional Programming Methods. In 2003, the Herfstdagen were dedicated
to Compositional Programming Methods, and the Lentedagen were on Bioinformatics.

On the European front, IPA continued its cooperation in the Europcan Educational Forum
(EEF) with the rescarch schools BRICS (Denmark), TUCS (Finland), UKII (United Kingdom), IP
(Italy), GEFT (Germany) and FI (France). In the series of four summer schools on the Foundations
of Computer Science, organised by the EEF from 2000 - 2003, IPA hosted the final cvent, which
was dedicated to Concurrency.

Lentedagen April 23 - 25, NH Hotel, Best
Bioinformatics is an cxciting new scientific ficld that combines molecular biology with methods
and approaches from computer science and statistics. The cmphasis of the program, composed
by Joost Kok (UL) and Peter Hilbers (TU/e), was on new applications and rescarch questions
arising in the arcas of computer scicnce covered by IPA, but it brought together rescarchers from
all three disciplines.

The Lentedagen took the form of a series of lectures and tutorials, which were clustered into
sessions. Each session was dedicated to a different part of the “cycle of life” as it is studied in the
life sciences:

DNA
Population RNA
Organism Protein

Cell

To keep the program self-contained, it opened with a tutorial recalling the key biological notions
of the areas covered by the sessions. Abstracts, papers, handouts and presentations, can be found
at the web site.

Sce: www.win.tue.nl/ipa/archive/springdays2003/

Herfstdagen November 17 - 21, 2003, Hotel De Zwaan, Beckbergen

Compositional Programming Methods is one of the four application arcas chosen by IPA as a focus
for its rescarch in the period 2002 - 2006. In software engincering the role of software componcents
is becoming a key issue; unfortunately what a component is or should be is not yet well-understood
formally. Rescarchers in IPA aim to make progress in both theory and practice of the construction
of software. The leading theme for both sides is compositionality: obtaining larger systems from
smaller ones by means of well-understood composition rules.

The Herfstdagen intended to give an overview current research in and around IPA. Various
theories of components and composition and theories of component-based design were presented,
as well as applications of component models and component-based design. The program contained
sessions on: coordination, program algebra, proof systems for object-oriented programming, design
patterns, aspect orientation, attribute grammars, run-time composition, generic programming,
interface specification, and compositional program restructuring. Shmuel Katz of the Technion
(Haifa) was special guest speaker.

- The program was composed by Mehmet, Aksit (UT), Jan Bergstra (UvA), Marko van Eekelen
(KUN), Ruurd Kuiper (TU/e), and Doatse Swierstra (UU). Abstracts, papers, handouts and
presentations can be found at the web site: www.win.tue.nl/ipa/archive/falldays2003

EEF School on Concurrency May 19 - 31, Kapellerput, Heeze
The aim of the school was to provide in-depth knowledge to young scientists on the foundations of
Concurrency from a number of approaches. For each approach, training in theoretical foundations
was combined with hands-on experience with tools that have been developed within the approach.
The school program contained the following elements: Process algebra lecturers: Jos Baeten and
Jan Friso Groote (TU /e), tool: pCRL toolsct; Model checking lecturcrs: Dennis Das (Bell Labs)
and Dragan Bosnacki (TU/e), tool: Spin; Verification of non-functional properties lecturers: Kim
Larsen and Gerd Behrmann (Aalborg University), tool: Uppaal; Theorem proving lecturers: Jozef
Hooman and Adriaan de Groot (University of Nijmegen), tool: PVS; Petri nets lecturers: Wil van
der Aalst and Ella Roubtsova (TU /e), tools: Woflan, Protos, CPN tools. Among the participants
were 20 Ph.D. students from 10 different countries. More information on the school, including some
pictures, can be found at the school’s web page: www.win.tue.nl/ipa/archive/EEFschool/.
The companion series of EEF summer schools, the series on Trends in Computer Science, also
saw its final event in 2003 with the Trends School on Mobile Computing, hosted by the British
research school UKII and held in Edinburgh from July 7 - 12. For more information on EEF and
its activities, see: www.win.tue.nl/EEF/.

In addition to organising the Lentedagen, the EEF Summerschool, and the Herfstdagen, IPA
contributed to the organisation of ICALP2003. This 30th annual meeting of the FEuropean Asso-
ciation of Theoretical Computer Science was held at the Technische Universiteit Eindhoven from
June 30 - July 4. As usual there were two tracks to the conference: Track A covering Algorithins,
Automata, Complexity and Games, and Track B covering Logic, Semantics and Theory of Pro-
gramming. The proccedings of ICALP2003 have been published by Springer Verlag as LNCS 2719

(Baeten, Lenstra, Parrow, Woeginger (Eds.)). In the weekends surrounding the conference there
was an extensive program of pre- and post-conference workshops, several of which were organised
by IPA researchers.

In 2003, IPA sponsored two further events: the international symposium on Formal Methods
for Components, Objects and their implementation (FMCO 2003, November 4 - 7, Lorentz Center,
Leiden), and the 9de Nationale Testdag (November 25, University of Nijmegen).

IPA Ph.D. Defenses in 2003

J.J.D. Aerts Random Redundant Storage for Video on Demand
Faculty of Mathematics and Computer Science, TU/e
January 16, IPA-Dissertation Series 2003-01

J.M.W. Visser Generic Traversal over Typed Source Code Representations
Faculty of Natural Sciences, Mathematics, and Computer Science, UvA
February 14, IPA-Dissertation Series 2003-03

T.A.C. Willemse Semantics and Verification in Process Algebras with
Data and Timing

Faculty of Mathematics and Computer Scicnee, TU/e

February 20, IPA-Disscrtation Series 2003-05

S.M. Bohte Spiking Neural Networks
Faculty of Mathematics and Natural Sciences, UL
March 5, IPA-Disscrtation Scrics 2003-04

M. de Jonge To Reuse or To Be Reused: Techniques for Component
Composition and Construction

Faculty of Natural Sciences, Mathematics, and Computer Science, UvA
March 6, IPA-Dissertation Series 2003-02

S.V. Nedea Analysis and Simulations of Catalytic Reactions
Faculty of Mathematics and Computer Science, TU/e
March 19, IPA-Dissertation Series 2003-06

M.E.M. Lijding Real-time Scheduling of Tertiary Storage
Faculty of Electrical Engineering, Mathematics & Computer Science, UT
May 1, IPA-Dissertation Scrics 2003-07

H.P. Benz Casual Multimedia Process Annotation — CoMPAs
Faculty of Electrical Engincering, Mathematics & Computer Science, UT
May 14, IPA-Disscrtation Scries 2003-08

D.J.P. Leijen The A Abroad — A Functional Approach to Software
Components

Faculty of Mathematics and Computer Science, UU

November 4, IPA-Dissertation Series 2003-11

D. Distefano On Modelchecking the Dynamics of Object-based Software:
a Foundational Approach ‘

Faculty of Electrical Engineering, Mathematics & Computer Science, UT
November 7, IPA-Dissertation Series 2003-09

M.H. ter Beek Team Automata — A Formal Approach to the Modeling of Collaboration Between
System. Cornponents

Faculty of Mathematics and Natural Sciences, UL

Dccember 10, IPA-Dissertation Series 2003-10

10

Activities in 2004

Although several activities for 2004 are still under development, the themes for the major IPA-
events are known: the Lentedagen will be on Hybrid Systems and the Herfstdagen will be dedicated
to Intelligent Algorithms.

Lentedagen April 14-16, 2004, Kapellerput, Heeze.

More and more systems emerge in which discrete digital controllers control continuous physical
processes. Such systems are called “hybrid systems”, because they combine discrete and continuous
behaviour. Although there are methods for understanding both forms of behaviour separately
(continuous behaviour in control science and system theory, and discrete behaviour in computer
science), the proper functioning of a hybrid system depends critically on the interaction between
the discrete dynamics of the controller and the continuous dynamics of the environment. Hence,
the correct and efficient design of such systems requires expertise that is spread over different
communities.

Over the past few years, IPA-researchers working in the arca of cmbedded systems have made
contact with researchers from communitics studying continuous behaviour and started to create
a common theoretical basis for the understanding of hybrid systems. The program of the IPA
Herfstdagen will present the research currently performed in and around IPA on formalisms,
tools, and techniques for the modeling, analysis, validation, and verification of hybrid systems.

More information on the Lentedagen, Herfstdagen, and other upcoming activities will become
available through the IPA web pages.

Addresses

Visiting address Postal address
Eindhoven University of Technology IPA, Fac. of Math. and Comp. Sci.
Main Building HG 7.22 Eindhoven University of Technology
Den Dolech 2 P.O. Box 513
5612 AZ Eindhoven 5600 MB Eindhoven
The Netherlands The Netherlands

tel. (+31)-40-2474124 (IPA Secretariat)
fax (431)-40-2475361

e-mail ipa@tue.nl

url www.win.tue.nl/ipa/

11

Approximations through relaxations

GERHARD J. WOEGINGER *

Abstract

We discuss polynomial time approximation results for two combinatorial optimization
problems (one problem from graph theory, one problem from scheduling theory). The results
arc bascd on the technique of rounding the optimal solution of an underlying lincar pro-
gramming relaxation. We analyze these relaxations, their integrality gaps, and the resulting
approximation algorithms, and we derive matching worst case instances.

Keywords: Approximation algorithm; worst casc analysis; performance guarantee; lincar
programming rclaxation; integrality gap

1 Introduction

Most real-world optimization problems are NP-hard. And most NP-hard problems are difficult
to solve to optimality. We conclude: Most real-world optimization problems are difficult to solve
to optimality. A standard way of working around this rather pessimistic conclusion is to relax
optimality, and to satisfy oneself instcad with near-optimal or approximate solutions. This leads
us into the arca of approximation algorithms for combinatorial optimization problems.

A combinatorial optimization problem consists of a set Z of instances, and a family F(I) of
feasible solutions for every instance I € Z. Every feasible solution F' € F(I) comes with a non-
negative cost ¢(F"). In this paper, we will only consider minimization problems, where the objective
is to determine a feasible solution of minimum possible cost. An approzimation algorithm is an
algorithm that for every instance I € Z returns a near-optimal solution. If it manages to do this in
polynomial time, then it is called a polynomial time approximation algorithm. An approximation
algorithm for a minimization problem is called a p-approzimation algorithm, if it always returns
a near-optimal solution with cost at most a factor p above the optimal cost. Such a value p > 1
is called a worst case performance guarantee of the algorithm.

Approximations through relaxations. One standard approach for designing polynomial time
approximation algorithms for a (difficult, NP-hard) optimization problem P is the following:

(S1) Relax some of the constraints of the hard problem P to get an easier problem P’ (the
so-called relazation).

(S2) Compute in polynomial time an optimal solution S’ for this casicr relaxed problem 7.

(S3) Translate in polynomial time the solution S’ into an approximate solution S for the original
problem P,

(S4) Analyze the quality of solution S for P by comparing its cost to the cost of solution 8’ for
P

*gwoegi@win.tue.nl. Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513, 5600
MB Eindhoven.

12

Let COPt denote the optimal cost of the orginal problem instance, let Cf** denote the optimal
cost of the relaxed instance, and let C4P? denote the cost of the translated approximate solution.
To show that the sketched approach has a performance guarantee of p, one usually establishes the
following chain of inequalities:

CRLJ; < COpt < CApp < p_CRlz < p_COpt. (1)

The first and the last inequality in this chain arc trivial, since problem P’ results from problem
P by relaxing constraints. The second inequality is also trivial, since the optimal solution is at
least as good as some approximate solution. The third inequality contains the crucial step in
the chain, and all the analysis work goes into proving that step. This third incquality rclates
the relaxed solution to the approximate solution; both solutions are polynomial time computable,
and hence their combinatorics will be nice and well-behaved. Thus, the chain yields the desired
relation C4PP < p. COP! by analyzing nice, polynomial time computable objects. The analysis
avoids touching the orginal NP-hard problem whose combinatorics is messy and complicated and
hard to grasp.

Worst case gaps and integrality gaps. Of course, we would like to make the value of the
parameter p as small as possible: The closer p is to 1, the better is the performance of the
approximation algorithm. How can we argue that our worst case analysis is complete? How can
we argue that we have reached the smallest possible value for p? That’s usually done by exhibiting
a so-called worst case instance, that is, an instance I that demonstrates a worst case gap of p for
the approximation algorithm:

C}APP — p.CIOIJt and CIOIJt — C«]Rla:. (2)

Here the left hand equation establishes the gap, and together with the chain (1) it yields the right
hand equation. The worst casc instance (2) illustrates that our analysis of the combined approach
(S1)—(83) is tight. Is this the end of the story? Not necessarily. We could possibly start with the
same relaxation step (S1), then solve the relaxation with the same step (S2), and then come up
with a completely new (and better) translation step. How can we argue that this is not possible?
How can we argue that the value p is already the best performance guarantee that we possibly
can get out of the considered relaxation? That’s usually done by exhibiting an instance J that
demonstrates an integrality gap of p between the original problem and the relaxation:

CP*" = p-CH* and CP = Ccivr (3)

The cquation on the left hand side establishes the gap, and with (1) it yields the cquation on
the right hand side. In particular, we have Cfp P =p. C’flz. For instance J the third inequality
in the chain (1) is tight, and there is no way of proving a better performance guarantee for an
approximation algorithm built around the considered relaxation. We stress that such a better
approximation algorithm around the relaxation might well exist, but we will never be able to
prove that its performance guarantee is better than p within the framework described above.

For p > 1, the conditions in (2) and in (3) can not be satisfied by the same instance, as they
would be contradictory. Hence, a complete analysis of an approximation algorithm within this
framework always must provide two separate bad instances, one for the worst case gap and one
for the integrality gap.

Overview of this paper. We will illustrate the approach (S1)- (S4) with two examples. The
first example (in Section 2) comes from graph theory, and the second example (in Section 3) comes
from scheduling theory. For both examples we provide an integer programming formulation, a
relaxation, an approximation algorithm, a worst casc analysis, and two gap instances. For more
information on this ficld, we refer the reader to the excellent book [6] by Vazirani.

13

2 The vertex cover problem

As our first example we will discuss the vertez cover problem (VC, for short): An input to this
problem consists of an undirected graph G = (V, E). A subsct S C V that touches cvery odge

in E is called a vertex cover of G, and the goal is to find a vertex cover of minimum cardinality.
Problem VC is well-known to be NP-hard (Garey & Johnson [2]).

Exact formulation and relaxation. Consider the following integer programming formulation
(4) of VC. Let vy, ..., v, be an enumeration of the vertices in V. For every vertex v;, the binary
variable x; decides whether o; is in the vertex cover (in which case #; = 1) or whether v; is not. in
the vertex cover (z; = 0).

min Y ' x;
st. wytx; = 1 for every edge [v;,v;] € E (4)
x; € {0,1} fori=1,...,n

The constraints state that every edge must be touched by the vertices v; with z; = 1, that
is, by the vertices in the cover. Since VC is an NP-hard problem, also the equivalent integer
programming formulation (4) will be NP-hard to solve. Therefore, we relax this formulation to get
something simpler: We replace the integrality constraints “z; € {0,1}” by continuous constraints
< <1

min Y 2y
st. x;+x; > 1 for every edge [v;,v;] € E (5)
0<r; <1 fori=1,...,n

Since all variables are now continuous, this relaxation is a standard linear program and can be
solved to optimality in polynomial time. We denote the optimal objective value of (4) by C©rt,
and the optimal objective value of the LP-relaxation (5) by CX¥. Furthermore, we denote by k¥
the value of variable z; in the optimal LP-solution.

The approximation algorithm. Now let us translate the LP-solution into a ‘nearby’ feasible
IP-solution. The trouble with the LP-solution is that the variables X7 nced not be integral,
whereas we would like them to be binary. A simple way of resolving this problem is to do
threshold rounding: If x5 < 1/2, then we define a corresponding rounded variable #; = 0.
And if z2¥ > 1/2, then we define a corresponding rounded variable z; = 1. The corresponding
rounded objective value is denoted by C4PP = 37 | 7.

Let us verify that the rounded values #; constitute a feasible solution of {4): Tf they violate
some constraint “I; + I; > 17, then Z; = #; = 0 must hold, and thus 227 < 1/2 and a:]LP < 1/2.
But this would yield z2¥ + :cfp < 1, and contradict the feasibility of the LI-solution for (5).
Hence, the rounded solution indeed is feasible for (4). What about its quality? We observe that
the threshold rounding yields

< 2zFF fori=1,...,n. ‘ (6)
By adding up the incqualitics (6) for i = 1,...,n we derive that

cArr = Nz <2y a4 =20t < 209 (7)
=1

=1

Hence, the described approximation algorithm has a worst case performance guarantee of at most 2.

14

Analysis of the two gaps. Is our worst case bound of 2 on the worst case performance guarantee
of this algorithm best possible? Yes, it is: Consider the complete bipartite graph where V. = LUR
with |L| = |R| =n/2 and E = {[u,v]: w € L, v € R}. Then an optimal vertex cover consists of
all vertices in L, and has C9P% = n/2. One optimal LP-solution is given by X = 1/2; this leads
to #; = 1 and CAPP =,

Gap 2.1 There exist instances for VC for which the gap between the optimal objective value and
the objective value produced by the rounding algorithm equals 2.

And what about the integrality gap of the LP-relaxation? Consider the complete graph K,, on
n vertices (the graph that contains all possible edges). Then C %t = n — 1, since by omitting two
vertices, we would not touch the edge between these two vertices. Morevoer, the LP-relaxation
has an optimal solution with X = 1/2 and C*F = n/2.

Gap 2.2 The integrality gap of the lincar programming relaxation for problem VC is 2.

Arora, Bollobés & Lovész [1] show that certain large families of linear programming relaxations
for vertex cover all have integrality gaps of at least 2. Tt is an outstanding open problem to break
through this barrier of 2. Hastad [3] has proved that unless P=NP, there cannot be a polynomial
time approximation algorithm for vertex cover with performance guarantee strictly less than 7 /6.

3 Scheduling with job rejections

In this section, we consider an environment with n jobs Ji,...,J,, and with m unrelated parallel
machines My, ..., My,. Job J; has a processing time pi; on machine M;, and moreover job Jj
has a positive rejection penalty f;. All jobs are available at time 0. Preemption of the jobs is
allowed (that is, a job may be arbitrarily interrupted and resumed later on an arbitrary machine).
A job may be processed on at most one machine at a time, and every machine may process at
most one job at a time. For each job J;, it must be decided whether to accept or to reject it.
The accepted jobs are to be scheduled on the m machines. For the accepted jobs, we pay the
makespan of this schedule (that is, the maximum job completion time). For the rejected jobs, we
pay their rcjection penalties. In other words, the objective valuce is the preemptive makespan of
the accepted jobs plus the total penalty of the rejected jobs. This scheduling problem is denoted
by SCHED. Hoogeveen, Skutella & Woceginger [4] have proved that it is NP-hard in the strong
scnsc.

Exact formulation and relaxation. Again, we will start by stating an integer programming
formulation. For job J;, the binary variable y; decides whether J; is rejected (y; = 0) or accepted
(y; = 1). The continuous variables x5 describe which percentage of job J; should be processed
on machine M;. The continuous variable C' denotes the optimal preemptive makespan for the
accepted jobs.

min C+ Z?:l(l —yi)fj

IN

s.t. Z;”Zl Ti;Dij C fori=1,....,m

Yt wypi; < C forj=1,...,n

STy = vy forj=1,....n
zi5 2 0 fori=1,...,mand j=1,...,n
y; € {0,1} forj=1,...,n

The first family of constraints states that for every machine the total assigned processing time is
at most C. The second family of constraints states that the total processing time of any accepted

15

job cannot exceed C. The third family of constraints connects the binary decision variables y; to
the continuous variables z;;: If a job is accepted (y; = 1), then the percentages Z; should add up
to 1 = y;. If a job is rejected (y; = 0), then the percentages z; should add up to 0 = y;.

As soon as we have fixed all the values z;;, the remaining makespan minimization problem
is essentially makespan minimization in a preemptive open shop. It is well-known [5] that for a
preemptive open shop, the smallest value C fulfilling the first and second family of constraints in
(8) yields the optimal preemptive makespan. To summarize, the integer program (8) is a complete
and correct. description of the problem SCHED.

We define the LP-relaxation of the integer programming formulation (8) by replacing the
integrality constraints “y; € {0,1}” by continuous constraints “0 < y; <17. This LP-relaxation
can be solved in polynomial time, and we denote an optimal solution by :L'fjp , ijP , and CF.
The approximation algorithm. Now we want to translate the LP-solution into a rcasonable
feasible solution for the (8). We mainly have to take care of the decision variables y;; howcver,
this time we also must pay attention to the continuous variables x;;, since their values depend on
the values y; via the third family of constraints in (8).

We randomly choose a threshold o from the uniform distribution over the interval 1/e,1];
here as usual e ~ 2.71828 denotes the base of the natural logarithm. If yf© < o, then we define
a rounded decision variable §; := 0, and otherwise we define §; := 1. Jobs J; with §; = 0 are
rejected in the rounded solution, and we set all their variables &;; = 0. Jobs J; with §; = 1 are
accepted in the rounded solution; we set all their variables Z;; := rﬂffjp / ijP . Finally, we define the
rounded makespan by

T m

C = max{ max E TiiDis, MAx E TiiDiit- 9
{1§i<n i§Pij: 1<j<n & iPis} ©)
1=

j=1
It can be verified that the rounded solution #;;, ¥, and C constitutes a feasible solution of (8):
All variables §j; are binary. For j with ; = 0, the variables Z;; add up to 0. For j with §; = 1,
the variables Z;; add up to ¥, 257 /yFT = 1. Finally, in (9) the value of C is fixed in order to
fulfill the first and the second family of constraints.

Now let us analyze the quality of this rounded solution. For any fixed value of «, the rounded
variable ¥;; is at most a factor of 1 /o above xiLjP . Hence, by linearity also C is at most a factor of
1/« above CLF. Then the expected multiplicative increase in the makespan is at most a factor of

1
e e
/o do = .
6—1/1/5 fo da e—1

In the LP-solution, the contribution of job J; to the total rejection penalty is (1 — yJI-‘P)f;. The
expected contribution of J; to the rejection penalty in the rounded solution is

1 2
fj - Problyi” <a] = f,/ C_da

max{1/e,yl €

1
€
= fj/ipe—ldn
yEP €

i

(62

= _1‘(1—yfp)fj-

e

Allin all, the expected objective value for the rounded solution is at most a factor of ¢ [(e—1) ~= 1.58
above the optimal objective value of the LP-relaxation. Hence, our procedure yields a randomized
polynomial time approximation algorithm with a worst case performance guarantee of ¢/(e — 1).
How can we turn this randomized algorithm into a deterministic algorithm? Well, the only
critical values for the threshold parameter o are the values ijP with j = 1,...,n. All other values
of a will yield the same solution as for one of these criticial values. Hence, it is straightforward
to derandomize the algorithm in polynomial time: We compute the n rounded solutions that
correspond to these n critical values, and we select the solution with smallest objective value.

16

Analysis of the two gaps. Our next goal is to give a worst case instance for the above ap-
proximation algorithm for SCHED. The instance is based on an integer parameter q. There are

= (¢ +1)? — ¢? machines M; that are indexed by j = ¢? + 1,..., (g + 1)9. For every machine
Mj, there are two corresponding jobs J; and J J’ that have infinite processing requirements on all
other machines M; with ¢ # j; this implies that these two jobs either have to be rejected or have
to be processed on M;. The processing time of job J; on M; is j — ¢4, and its rejection penalty
is (— ¢9)/j. The processing time of job Jj on Mj is g%, and its rejection penalty is ¢?/j. Note
that the overall processing time of .J; and JJ'- is j, and that their overall penalty is 1.

One possible feasible solution accepts all the jobs J j’ and rejects all the jobs J;. The resulting
makespan is C = ¢9, and the resulting objective value equals

(g+1)7 (g+1)?
@+ Y (G—q9 —(qul)"fq" > - (10)
J=q9+1 Jj=qi+1 J

It can be verified that this in fact is the optimal objective value. Next, assume that the ap-
proximation algorithm starts from the following feasible solution for the LD-relaxation: For
i=q%+1,.. (q +1)9 the two jobs J; and J both get an acceptance value yLP = ¢%/4. Then on
every machlne , the overall accepted processmg time is (j — ¢9)y;F + ¢ yLP = q%. The penalty
of job J; plus the penalty of job JJ’ equals 1 —1] = (j—¢%)/j. Hence, the objective value of this
LP-solution equals the value in (10).

Consider the rounding step for some fixed threshold «. Since the values y = q9/j are
decrcasing in g, there cxists some index k such that for 5 < k the valucs 1/LP = q%/5 all arc
rounded up to 1 (and the corresponding jobs are accepted), whereas for j > k + 1 the values
yJ = ¢?/7 all are rounded down to 0 (and the corresponding jobs are rejected). Then the
makespan becomes k (the load on machine My), the total rejection penalty is (¢ + 1)¢ — k, and
the objective value is (q + 1)9. Thus, the objective value in the rounded solution always equals
(7 + 1), and does not depend on « or k.

The ratio between the optimal objective value in (10) and the approximate objective value of
(g + 1)? equals

N
1—(q+1) > = (11)

J=q9+1

We estimate the sum in (11) by

(g+1)7+1 4 (g+1 1 (a+1)7 4
/ —dz < E - < / —dz .
q z L a z

41 4

Since the integrals on the left and on the right hand side both converge to 1 when ¢ goos to
infinity, the same holds true for the sum in between. Hence, the ratio in (11) behaves roughly like
((g+1)7 —¢%) /(g + 1)9. For large g, this ratio tends to (e — 1)/e.

Gap 3.1 There exist instances of SCHED for which the gap between the optimal makespan and
the makespan produced by the rounding algorithm comes arbitrarily close to e/(e—1).

Our final goal in this section is to get the matching lower bound of ¢/(e — 1) for the integrality
gap of the LP-relaxation for SCHED. We usc a slight modification of the instance constructed
above. Again, we use an integer parameter ¢, and again therc arc m = = (q+ 1) — ¢¢ machincs M;
that arc indexed by j =¢9+1,...,(¢+1)9. For every machinc Mj, there is one corresponding .]ob
Jj. The processing requlrements of Jj are pj; = j, and p;; = o0 for i # j. The rejection penalty
is uniformly f; = 1.

Consider a ‘reasonable’ feasible schedule with makespan T: Then the jobs on machines M;
with j < 7" will be accepted, and the jobs on machines M; with j > T will be rejected. This ylelds
a total rejection penalty of (¢+ 1)? — T, and an optimal obJectlve value of (g+1)9. Next, consider

17

the following feasible solution for the LP-relaxation: We set yfp =q/jforj=q?+1,...,(qg+1)4,
and we sct CL¥ = g%, The objective value of this solution is equal to

(g+1)" @
¢+ 3 A-yh) = @i - Y -
j=qi+1 j=qit17

Since this LP-value is equal to the value in (10), and since the optimal value is equal to (¢ 4 1)9,
the ratio of these two values equals the ratio in (11). The arguments around (11) show that as ¢
becomes large, this ratio tends to (e — 1) /e.

Gap 3.2 For problem SCHED, the integrality gap of the LP-relazation is ¢/(¢ — 1).

It would be nice to get a polynomial time approximation algorithm for SCHED with a worst

case performance guarantee better than e/(e — 1).

References

[

2]

[6]

S. ARORA, B. BOLLOBAS, AND L. LovAsz (2002). Proving integrality gaps without knowing
the linear program. Proceedings of the 43rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS’'2002), 313-322.

M.R. GAREY AND D.S. JOHNSON (1979). Computers and Intractability. W.H. Freeman and
Co., New York.

J. HAstAD (1999). Clique is hard to approximate within n!=¢. Acta Mathematica 182, 105—
142.

H. HOOGEVEEN, M. SKUTELLA, AND G.J. WOEGINGER (2003). Preemptive scheduling with
rejection. Mathematical Programming 94, 361-374.

E.L. LawLer, J.K. LENsTRA, A.H.G. RINNOOY KAN, AND D.B. SiiM0YS (1993). Sequenc-
ing and scheduling: Algorithms and complexity. In: S.C. Graves, A.H.G. Rinnooy Kan, and
P.H. Zipkin (eds.) Logistics of Production and Inventory, Handbooks in Operations Research
and Management Science 4, North-Holland, Amsterdam, 445 522,

V.V. VAZIRANI (2001). Approzimation Algorithms. Springer-Verlag, Berlin, Heidelberg.

18

Domain Independent Hierarchical Clustering

Rudi Cilibrasi, Centrum voor Wiskunde en Informatica

Artificial intelligence has taken hold as a persistent holy grail in computing, Although conversational
robots have been so far constrained to the realms of science fiction, there have been incremental steps
towards true machine intelligence over the past twenty years. Like space exploration, the dream of artificial
intelligence holds a special place in many minds as one of the most inspirational branches of computer
science. Science cannot yet take people to vacations on the moon, but just this month we have enjoyed
high resolution photographs of Mars sent from our robotic tourist rover. In this article, I will invite you to
read about another small step on the road towards practical machine learning,

In the last two years, Ming Li and Paul Vitanyi (and others in their groups) devised a formula involving
two objects or files. These objects can be any type of information, in the same way a computer’s hard
disk drive can hold any sort of data. By using a powerful and general mathematical notion termed Kol-
mogorov Complexity, Li and Vitanyi have managed to create a normalized information distance measure.
In plain terms, Kolmogorov Complexity can be thought to be the size of a file when compressed by the
best conceivable data compression program. Of course, we cannot ever actually know the exact size of
any particular file under such an idealized compressor, because we cannot yet (nor ever) build a “perfect
compressor.” Just the same, it is possible to explore the underlying mathematical structure of such a com-
pressor, and doing so has led to some surprisingly practical results. Li and Vitdnyi have collected a wealth
of information on this theory in their excellent book, An Introduction to Kolmogorov Complexity and Its
Applications. [1]

A normalized distance is a number between 0 and 1 that represents some idea of similarity between two
objects. In the case of a normalized information distance, the objects we are talking about are files stored
on a computer. A distance of 0 means two files are identical, whereas a distance of 1 means that two files
are totally unrelated to each other. There are many different ways to analyze files. There are many different
characteristics that could be compared, each leading to a different notion of distance. A recent theoretical
breakthrough was achieved when a formula was discovered that could be said to be a sort of combination
of all possible distance metrics. Just as the mathematical ideal of Kolmogorov Complexity can be said to
be the size when the ultimate compression program is applied, so such values can be arranged in a simple
quotient formula to arrive at the most generally informative normalized information distance in a certain
mathematical sense. [2, 3] At first, this formula was of primarily theoretical interest. The formula attained
practical relevance when Li realized that the formula may happen to work using real data compression
programs in this setting. A formal justification for this step was only discovered later in [5]. Just last year
it has received renewed attention with the help of the author. Cilibrasi streamlined the software and made
a modified tree search algorithm and packaged the system as a convenient open-source offering. We have
created a fast, easy-to-use software package that opens the door to further exploration. The software uses
generic compressors instead of true Kolmogorov Complexity to carry through the mathematical formulas
to arrive at some real number between 0 and 1 that relates any two files. Several months later this idea was
implemented at CWI (Centrum voor Wiskunde en Informatica) using clusters of workstations in parallel,
and the results have been consistently intriguing. We have applied this technique in areas as diverse as
medicine, astronomy, biology, and network packet analysis.

Intelligence has historically been a characteristic proudly flaunted as synonymous with the human spirit.
Yet in the last 30 years we have seen brief flashes of synthetic intelligence in unexpected areas. A great
example is the game of chess. Fifteen years ago, chess world champion Garry Kasparov claimed that he
would never be beaten by a computer. Just a few years later, it happened. Then again and again. By now,
this has happened many times, and many chess fans believe it is inevitable that one day no human will be
able to beat the best computer opponent. While these milestones are encouraging to computer scientists
around the world, they do little towards helping us build conversational robots. This is because every major

19

advance in artificial intelligence so far has been limited to a very specific domain. We can make a robot
play Connect Four perfectly, or focus a camera, or calculate airflows around a wing. But we have no
computer that can yet answer the spoken question, “How many words does this sentence have?” without
a preprogrammed cheat-sheet of canned responses. The problem is one of contextual domains: When a
computer plays strategy games, the types of questions it must consider are limited to a very small part of
the universe. In these thimble-sized worlds, computers reign supreme. But when the context expands out
into the fuzzier domains of human knowledge, communication, and creative problem-solving, computer
scientists have been unable to mount a decent attempt at giving a computer “common sense.” It seems
intrinsic to human natural language to have a wide range of possible contexts, and this has stymied the
ability of people to use computers effectively forever.

Our new technique of calculating the so-called Normalized Compression Distance, or NCD, between
files is a small step in the direction of reasoning within larger contexts than traditional machine learning
methodologies. In essence, the method builds upon the genericity of programs like WinZip and other
general purpose data compressors. When you compress a file with WinZip, it is not necessary to tell it
anything about the meaning of the file; the only instruction it needs from the user is which file to compress.
Rather, it analyses the file and looks for patterns of repetition, blithely unaware of any semantic significance
the data may have. The remarkable reality is that this simple-minded sort of counting of repetitions is
enough to reach seemingly complex conclusions without preprogrammed domain-specific knowledge. The
formula used is quite easy: For any two files, A and B, call the compressed size of each of them C, and Cp.
Then combine the two files through concatenation, and call the size of this when compressed Cap. Then
we define NCD(a,b) = (Cag — min(Ca,Cp))/max(Ca,Cg). By using this simple formula for every pair of
files in a group, we are able to make a matrix of distances that represent how similar or different any two
files are.

One of our favorite examples involves animals. Here, we took the mitochondrial genetic sequences of
24 different animals. Next, we used a compressor called PPMZ and calculated the NCD to get the following
matrix of distances:

Bluchale Zat £chidna Gorilla Horse Opossun Polarbear SumGrang
Brownlea: Chimpangee virWhale GreySeal llouseMouse Grangutan sygmy Chinp Wallaroo
Carp Cow Gibbon HarborSeal Human Platypus Rat Whitekhing

BlueWhale €.005 9.906 0.943 0.897 0,925 £.883 0.936 C.616 0.929 0.931 0.901 0.898 0.896 0.926 0.920 0.936 0.928 £.928 0.907 6.930 0.927 6.929 0,925 0.302
Brownliear 0,906 0,002 G943 0,887 0.935 0.906 0.944 0.915 0.939 0,940 0.875 0.372 0.910 0.934 0,930 0,935 0,938 0.937 0,269 0.%40 0.935 0.936 0,923 0.515
Carp 0,843 0.84% 0.006 0,946 0.95d ©.947 0.955 0.952 0,951 0.957 0,949 0.950 £.952 0.956 0.946 0.956 0.953 0.954 0.945 0.960 0.950 €.953 9.947 0.960
Col G.897 0.887 0.946 0.003 0.9726 0.857 0.542 0,905 0,928 0.931 0.87C 0.572 0.885 0,919 0.922 0.933 0.932 ©.931 0.885 0.929 0.920 0.934 0.913 0.897
Chimpansse 0.925 0.935 .354 0,925 0.006 0.926 0.545 0.925 0.84% 0,731 0.925 0.922 0.921 0.943 0.667 0.943 0.841 0.946 0.931 0,441 0.933 0.635 0.934 0.950
ow 0.883 0.905 0,947 0,897 0.926 0.006 0.936 0.885 0.931 0.927 0.890 0.888 0.893 0,925 0.920 0,931 0.930 £.929 0.905 0.931 0,921 0.930 0.975 0.859
Femidee 0.936 0944 0.955 0.947 0.948 €.936 0.005 0.936 0,547 0.947 0.94C 0.937 0,942 0,941 0,939 0.935 0.947 ©.855 0.935 0,949 0,943 .547 0.929 0,948
Finbackihate 0.616 0.915 €952 0.905 0.526 0.885 0.936 0.005 0.930 0,931 0.911 0.308 0.961 0.923 £.922 0,936 0.933 0.934 0,910 0.932 0.928 0.932 0.577 0.902
Gibban 0.528 0.939 0,951 0.928 0.849 0.921 0.947 0.330 0.005 0.859 0.932 0.930 €.927 0,948 0.844 0.95% 0.872 0.952 0.936 0.853 0.939 0.268 0.933 0.929
Gerilla €.931 0.940 0.957 0.831 0.731 §.927 0.947 C.931 0.859 0.006 0.927 0.929 0.924 0.944 0,737 0.942 0.835 0.943 0.978 €.732 0.932 €.536 0.934 0,579
GreySeal 0.901 0.875 €.949 0.87¢ 0.925 0,890 0.940 0.917 0.932 0,927 0.003 0.399 0.888 0.974 £.922 0,933 0,931 0,936 0.863 0,929 0 (¢.930 0.920 0.898
HarborSea! 0.698 0.872 0.950 0.872 0.922 C.888 0.937 0.998 0.930 0.929 0.39% 0.004 0.888 0.922 0.922 0,932 0.9 0. 0 2.919 0,300
Horse 0.896 0.910 0,952 0,885 0.921 0.893 0.942 0.501 0.927 0.924 0.88% 0.888 G.003 0,928 0.913 0.937 0.32 0. 0 6.924 0.848
HouseMouse €.926 0.934 0,956 0.919 0,943 0.925 0.941 0.933 0.948 0.944 0.924 0.922 0.928 0.006 0.932 0.923 0.944 0. 0 L921 0,978
Human 0,820 0,930 0,946 0,927 0.667 0,920 0.935 0.922 0.844 0,737 0,922 0.922 0.913 0.932 €.005 0,943 0.834 0.949 0. 0 0.934 0.979
Opossum 0.936 0,934 0.956 0,933 0.943 ©.931 4.936 0.936 D.951 0.944 0.933 0.933 0.937 0.923 0.949 0.005 0.960 0. 0 9.891 0.952
H 0.928 9,938 0.953 0,932 0.841 0.930 0.947 C.933 0.872 0.835 0.931 0,932 0,923 0.944 0.834 0.95D 0.006 ©0.954 0. 5 0,943 0.934
P_ctypus €.929 0.931 6.954 1.937 0,946 ©.929 0.855 0.934 0,952 0.943 0.93¢ 0.937 D.93¢ 0,970 0.949 0.928 0.95¢ .00 0. 949 0.920 0,348
PolarBear 0.907 D L 0,885 0,931 0.905 0.935 0.910 0.936 0.928 0.863 0.860 0,903 0.924 6.931 0.939 0.933 2 0. 6 0.927 0.917
PygmyChimp 0.930 0 0.929 0.441 D.931 £.949 0,932 D.854 0.732 0.929 0.930 C.923 0.942 0.681 0.959 0.843 0.942 538 0.931 0.929
Rat 6.92¢ D920 0.93% £.921 0.94% 0.928 0,933 0.938 D.922 0.922 0,912 0.869 0,938 0.947 0.343 370,930 0.9 L939 0,922 0,922
sumoranqutan 0,929 0 0.934 0.835 0.93C 0.947 £.932 0.868 0.836 0.93C 0.928 0.924 0.9%45 0.826 0,960 0.585 0.936 0.838 0.939 0.007 0.942 9.937
tallaroo 0.925 O 0.919 0,934 5.923 0.929 0.927 0.933 0.934 0.920 0.919 0.924 0.921 0.934 0.831 0.944% ©. 0.927 0.931 0.922 €.942 2.005 0.935
whiteRhino 0.902 0 0.897 0.90 0.899 0.94% 0.92 0.929 0.929 0.898 0,900 0.848 0.928 0.929 0.952 0.931 C.918 0.917 0.929 0.922 €.937 9.935 0.032

As you can see, this matrix contains quite a lot of common knowledge about animals. For instance,
the distance between a Brown Bear and a Polar Bear is 0.269. This number is substantially lower than
average, and suggests that these two different types of bears are in some way highly similar. If we apply a
simple tree search to look for the best unrooted binary tree that matches this distance matrix, more relevant
correspondences are displayed:

20

BlueWhale
FinbackWhale

BrownBear
PolarBear
GreySeal
HarborSeal

WhiteRhino

Gibbon

Gorilla

Human

Chimpanzee
PygmyChimp
Orangutan
SumatranOrangutan
HouseMouse

Opossum
Wallaroo

Echidna
Platypus

The evolutionary tree shown here is not in itself a new theory. The novel part is that the program that
generated this tree was told nothing about biology, evolution, DNA, or any sort of theory; we just fed in
the sequence data, asked for a tree, and the computer managed to do the right thing without being told
explicitly what the question was. This sort of open-ended fuzzy and generic reasoning make this approach

unique.

In another experiment, we took twelve MIDI music samples from Debussy, Bach, and Chopin. Here is

the result:

Finally, an example using written language samples from the United Nations Declaration of Human

Rights:

Ndebele
Rundi
Kicongo
Bemba
Dagaare
Ditammari
Somali
Dendi
Zapoteco
Chickasaw
Mazahua
Purhepecha
Dutch
German
English
Spanish

In our research, we have already applied this method to a wide variety of fields such as astronomy,
handwritten digit recognition, heart rhythm identification, music classification, authorship and translation
inference, and network packet classification for intrusion detection systems. It’s clear to us that we’ve
only begun to scratch the surface of possible applications of this technique, and so now are focussing

DebusBerg]

DcbusBerg?

DcbusBerg3

Carp

Cow

—

=1

Cat Ferungulates

Eutheria

Horse

—+

I

Primates

Rat

S L

Metatheria
Protothdtia

I

R

Africa

—

Africa

'__

I

Americas

I
T

Europe

}__

21

our research on trying to understand how this technique can be applied to real and relevant problems in
automated deduction and data mining.

If you are interested in finding out more, you can visit
http://homepages.cwi.nl/ "cilibrar/

to read the first two papers in this line of research, and you may download the software (available as open
source for Linux) from

http://complearn.sourceforge.net/

Further reading:

References

[11 M. Li and PM.B. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications, Springer-
Verlag, New York, 2nd Edition, 1997.

[2] C.H.Bennett, P. G4cs, M. Li, PM.B. Vitanyi, and W. Zurek. Information Distance, I[EEE Transactions
on Information Theory, 44:4(1998), 1407-1423.

[3] M. Li, X. Chen, X. Li, B. Ma, P. Vitanyi. The similarity metric, Proc. 14th ACM-SIAM Symposium
on Discrete Algorithms, 2003.

[4] R. Cilibrasi, R. de Wolf, P. Vitanyi. Algorithmic Clustering of Music,
http://arxiv.org/PS_cache/cs/pdf/0303/0303025.pdf
{5] R. Cilibrasi, P. Vitanyi. Clustering by Compression,

http://arxiv.org/PS_cache/cs/pdf/0312/0312044.pdf

22

Improving the Quality of Protocol Standards:
Correcting IEEE 1394.1 FireWire Net Update*

Judi Romijn
Eindhoven University of Technology

PO. Box 513
5600 MB Eindhoven, The Netherlands
email: Jj.m.t.romijn@tue.nl
Abstract

The new IEEE 1394.1 FireWire draft standard, which is expected to be finalised this year, contains a
new protocol for constructing and maintaining spanning trees in the network topology, called net up-
date. This protocol is complex and merits formal specification and analysis. In the scope of the NWO
Vernieuwingsimpuls Project ‘Improving the Quality of Protocol Standards’, we have taken part in the
standardisation process, and have helped the development of this protocol through Promela prototyping
(Spin simulation and model checking), PVS protocol derivation and manual proof. Our efforts have
resulted in the discovery and correction of many errors, omissions and inconsistencies, as well as the
addition of the correctness properties of the protocol to the standard description.

1 Introduction

The NWO Vernieuwingsimpuls ‘Improving the Quality of Protocol Standards’ which started in December
2001, has taken on its first case study in the net update protocol of the new 1EEE FireWire 1394.1 standard.
The standard enables building larger networks of IEEE 1394 buses by connecting these with bridges, and
the net update protocol maintains spanning trees in these networks. Because of the dynamic ‘plug-an-play’
character of 1394.1 networks, the behaviour of this protocol is so complex that it is almost impossible to
grasp just from reading the description in the standard, let alone understand if and why it is correct.

The members of the NWO project (Goga, Mooij, Romijn, and Wesselink) to gether with van Langevelde
(CWI, Amsterdam) have subjected net update to formal specification and analysis, and have discovered
many omissions, inconsistencies and errors. We have participated in the standardisation effort by taking
partin the IEEE 1394.1 Ballot Response Committee, and thus were in the position to influence the standard
and the development of net update itself. This has resulted in many adjustments of the protocol, the
construction of a new protocol, and the addition of the correctness properties in an annex of the standard.
The draft standard is being finalised at the time of writing to be sent to the IEEE recirculation ballot for the
second time.

In this paper, Section 2 introduces FireWire networks and explains the purpose and nature of net update.
Section 3 lists the results of our research: papers, changes in the standard, the new protocol, and the
correctness properties.

2 IEEE FireWire and Net Update

The 1394.1 functionality The IEEE 1394 standard [3, 4], specifies how devices, identified by their 64-bit
hardware addresses, can be interconnected with cables, without users having to worry about configuring
these devices. The IEEE abstraction as presented in the standard consists of nodes, identified by 6-bit
physical ids, connected with a serial bus. This abstraction is illustrated in Figure 1.

*This rescarch is supported by the Netherlands Organisation for Scicntific Rescarch NWO under project number 016.023.015
“Improving the Quality of Protocol Standards”, URL: http://www.win.tue.nl/cas/enindex. html.

23

E23

s
1394
%‘%‘é > e
3784DE015ABFFO03

34DEO1BSSCFFFE2

Figure 1: An example IEEE 1394 serial bus

0 2 0 1 2 0 1 0
T T I T 0] I T —1
1 3| |2 \M> 1] 3 2
bridgelabrici : v 2
0 1 2 3
2 3

Figure 2: An example IEEE 1394.1 net

In order to meet its high-performance needs, IEEE 1394 restricts serial buses to a maximum of 63
nodes attached, with a maximal cable length of 4.5 meters between each pair of nodes. Larger networks
may be built by connecting serial buses with bridges which selectively route network traffic originating
from a node on one bus destined to a node on another bus.

The IEEE 1394.1 standard [5] specifies how buses can be interconnected with bridges, consisting of a
pair of directly coupled nodes called bridge portals, without users having to worry about configuring any
of these buses. The two portals which constitute one bridge, called each other’s co-portal, communicate
via the bridge fabric, a medium which is beyond the 1394 protocol. It is important to note that as a
consequence, each of the two co-portals resides on its own separate bus. The abstraction as presented in
the standard consists of a ner of serial buses, where each bus is identified by a 10-bit bus id. This abstraction
is illustrated in Figure 2. The main restriction on IEEE 1394.1 nets is the maximum of 1023 buses attached.

Spanning trees In order to obtain and maintain the bus id numbering, and use this information for rout-
ing messages between different buses, yet another abstraction is necessary: viewing the net as a graph
with bridges for edges, and buses for nodes and having spanning trees in this graph structure. The graph
abstraction is illustrated in Figure 3. Here, the numbers in the nodes of the graph are the bus ids.

The first notion of spanning tree is the bus tree. For each bus id in use, the corresponding bus tree
enables the routing of messages destined for that bus id. An example bus tree is shown in Figure 4(a).
Here, the dashed edge indicates a bridge that is not part of the spanning tree. Clearly, there must be as

Figure 3: The bus-based graph abstraction

24

(a) The bus trec for (b) A nct trec
bus id 3

Figure 4: Examples of spanning trees for the net in Figure 3

prime: B prime: B
alpha: talse
muted: false
hops to prime: 1
bus ID: 4
route map{0j: valid

route map{1]: valid
route map{2]: forward
route map[3]: forward
route map{4j: valld
route mapf5]: forward
route map[6]: clean

route map(1]: forward
route map{2]: valid
route map{3]: vahd
route mapf4]: torward
route map([5]: valid
route mapf6]: clean

unique ID: F
physical ID: 1

'
: alpha: true
o770 muted: false

unique ID: E ! hops to prime: 2
physicat ID: 2 ! bus ID: 2

| route map[0]: forward

1

1

1

i

1

1

1

1

1

!
1
¥
1
1
1
1
1
1
1
1
1
1
i
]
1
1

Figure 5: Net update information per bridge portal

many bus trees as the number of bus ids in use.

The second notion of spanning tree is the ner free. There is one net tree that gives each bus a route
to the root bus where the prime portal resides. The prime portal is in charge of assigning bus ids and its
unique 64-bit id is the identity of the net. An example net tree is shown in Figure 4(b). Here, the white
arrow head indicates the prime portal.

How? The implementation of spanning trees is obtained as follows. Each bridge portal has information
that corresponds with that of its co-portal, and that initially spans a net tree consisting of just the edge
represented by that bridge, and no bus trees. Upon each topology change on a bus, first an algorithm called
net update is executed that adjusts the information of all bridge portals attached to the bus. It ensures the
maintenance and (if necessary) construction of the net tree as well as the maintenance and (if necessary)
desctruction of the bus trees. Whenever the information of one portal in the bridge is changed, this is done
in synchronisation with the co-portal, so the information of two portals in one bridge is always consistent.
Each adjusted bridge portal ensures that net update is executed on the co-portal’s bus as well, which by
repetition ensures that all bridges in the net are updated. Upon completion of net update on a bus, if the bus
has no bus id and hence no bus tree exists for it in the net, an algorithm called bus enumeration is executed
to obtain a new bus id and span the corresponding bus tree. The information employed by each bridge
portal for the net tree and the bus trees is the following:

prime: the unique identity of the prime portal (64 bits)

alpha: a direction flag for the net tree (1 bit)

mute: a flag indicating if the bridge can be used (1 bit)

hops to prime: the distance to the root bus of the net tree (10 bits)

bus id: the identity of the local bus (10 bits)

route map: for each possible bus id, a four-valued direction variable (clean/valid/forward/dirty, 2046 bits

in total)
The net update information is depicted in Figure 5 for the bridge that connects buses 2 and 4 in Figures 3
and 4.
The net update task of collecting information of all bridge portals on the bus, determining which trees

are to be destroyed, adjusted, spanned and left alone, and informing each bridge portal of the result, is

25

performed by one designated portal, the coordinator.

Graph view vs. implementation The relation between implementation variables and the graph abstrac-

tion is given by the following relations:

- A bridge portal is the prime portal iff prime is equal to its unique 64-bit identity and alpha is true.

- A bridge represents a directed edge in the net tree iff for both portals, mute is false, and for one of the
portals alpha is false or it is the prime portal, and for the other portal alpha is true and it is not the prime
portal. The directed bridge is an outgoing edge on the bus where the adjacent portal’s alpha is true and
it is not the prime portal, and it is an incoming edge on the other bus.

- A bridge represents an undirected edge in the net tree iff for both portals, mute is true and each portal’s
alpha is false.

- A bridge represents a directed edge in the bus tree for bus id b iff it is a directed edge in the net tree, and
route maplb] is forward for one portal, and valid for the other portal. The directed bridge is an outgoing
edge on the bus with the forward entry, and it is an incoming edge on the other bus.

- A bridge represents an undirected edge in the bus tree for bus id b iff it is a undirected edge in the net
tree, and route map[b] is valid for both portals.

- A bridge does not represent an edge in the bus tree for bus id b iff for both portals, route map[b] is clean
or dirty. The value dirty represents a bus id for which the bus tree is being destroyed, it is a temporary
value that only occurs during net update.

Any bridge state that is not covered by the above possibilities is an inconsistent state and cannot occur in

the net update protocol, except the ‘half-directed’ edge in a bus tree, where route map[b] is valid for one

portal and dirty for its co-portal. This is treated as an incoming edge as well on the bus with the valid entry.

Net update algorithm Net update (re)starts executing on a bus whenever the local bus topology has

changed (removal or insertion of bridge portals), or when one of the bridge portal’s information was ad-

justed because of net update executing on an adjacent bus. It consists of the following consecutive opera-
tions, presented in the graph terminology for sake of clarity and compactness. We assume extra variables
per bridge for the net identity, for the distance to the root bus in the net tree, and a destroy flag for each

possible bus id.

1. loop elimination: if the information of the bridge portals indicates a loop in the topology, then one edge
must be taken out of the net tree and bus trees. One of the following applies:

loop criterion I For one net tree identity, there are two outgoing edges on the bus. The one with the
largest distance to the root is selected.

loop criterion 2 For one net tree identity, there is one outgoing edge and one edge with the prime
portal on the bus. The outgoing edge is selected.

action The bridge with the selected edge is undirected in both the net tree and all bus trees.

2. spanning & destroying trees: each bridge attached to the bus is adjusted so that a selected net tree
is spanned, and each bus tree is either destroyed (if in conflict), spanned (if no conflict but not yet
complete) or left unchanged (otherwise).

net tree criterion The maximal net tree identity for which an outgoing edge or the prime portal is
present on the bus is selected. If there is no outgoing edge or prime portal, the unique id of one of
the bridge portals is selected at random.

distance criterion If the selected tree identity is of an outgoing edge, the distance of that bridge is
selected and incremented with 1. Otherwise, the selected distance is 0.

local bus tree criterion One of the bus trees for which there are only incoming edges and undirected
edges is selected at random.

bus tree criterion Each bus tree for which one of the following holds must be destroyed: (1) there
are two outgoing edges, (2) there is no outgoing edge and it is not the selected local bus tree, or
(3) the destroy flag is true for that bus id at a bridge portal. Each bus tree that is not destroyed for
which there is an outgoing edge must be extended.

net tree action For each bridge portal, the selected net tree identity is copied. If this means a change,
then the bridge is directed in the net tree towards the bus. If the bridge is incoming or undirected,
it copies the selected distance.

26

bus tree action For each bridge portal, and each bus tree, if it must be destroyed, the bridge is
undirected in the bus tree and the corresponding destroy flag is set to true. If it must be extended
and the bridge is undirected in the bus tree, then the bridge is directed in the bus tree towards the
bus. If it is the selected local bus tree, then the bridge is directed in the bus tree towards the bus.
spreading net update For each bridge portal that has been adjusted and that is directed in the net tree,
net update is started on the neighbour bus.
3. completion For each bridge not adjacent to a bus where net update is busy, all destroy flags are set to

false.
3 Results
3.1 Papers

In {6], van Langevelde, Romijn and Goga relate experiences with the tool Spin on Promela specifications
of parts of net update for maintaining the net tree and the bus trees, respectively. The most important resuit
is the discovery of non-termination of net update and a first attempt at the net panic procedure. The error
was detected with Spin simulation in the original net update procedure, but not in subsequent fixes although
these contained the same erroneous behaviour.

In [8], Mooij and Wesselink use formal derivation methods [1] to construct an abstract version of the
net tree part of net update. This is based on the correctness properties that must be obtained. Currently, the
proofs are being checked in PVS, while a front end tool for such proofs to PVS is being developed.

In [7], Mooij, Goga and Wesselink construct an alternative protocol for the net tree part of net up-
date. The alternative is a mixture of 1394.1 and TEEE 802.1 (as described in [9, 10]) functionality. The
correctness is proved with techniques from [1].

In [2], Goga and Romijn investigate the feasibility of adjusting Promela specifications in order to restrict
random simulations to interesting behaviour. A theoretic approach is given, and it is shown that given some
sufficient conditions, the adjusted Promela code does not exhibit new behaviour nor new deadlocks. Using
this approach, the non-terminating behaviour can finally be shown with Spin simulation in all erroneous
versions of net update.

A paper with manual proofs for the correctness of the net update and bus enumeration protocol at the
implementation level is in preparation. Partial correctness has already been shown, termination still needs
to be proved.

3.2 Changes in the IEEE standard

The involvement in the standardisation and our simulations, model checking attempts, protocol derivation
and manual proofs have led to a number of smaller and larger errors, omissions and inconsistencies to be
found and corrected. We mention only the changes in the IEEE standard with a significant impact on the
nature and correctness of the protocol.

Synchronised bridges The two portals in one bridge are now required to only change their information in
synchronisation with each other. This greatly simplifies the complexity and description of net update.
Unmuting The draft standard did not mention when a bridge without direction must be directed again, this
has been included and adjusted many times. The final version has been adjusted so that a better prime

portal is kept in more situations.

Portal’s tasks The behaviour of a portal and the coordinator task are considered to be two separate pro-
cesses, which simplifies the description of net update.

Undetected loops Multiple, rapid changes to the net topology may cause a loops that does not meet the loop
criterion, hence is not detected and may cause net update to not terminate. A separate net reset protocol
called net panic has been introduced to remedy this situation, which is described in Section 3.3.

Initial route map The initial value of a portal’s route map has been changed many times, from ‘vendor
dependent’ via several different initialisations to the final requirement which is that no bus id is in use.
Bus enumeration Although strictly outside the scope of the net update research, an addressing problem

in the bus enumeration protocol was detected, where an alpha portal contacting the prime portal with

27

1394.1 routing was not aware of the bus id of the prime portal. In the final version, the request is sent by
the co-portal of the requesting alpha, once the co-portal’s bus (which is nearer to the prime portal) has a
bus id. The request is routed via the net tree towards the prime portal, and the response is routed via the
appropriate bus tree back towards the co-portal of the requesting alpha, and forwarded over the bridge to
its final destination.

Route map updates Although bridge portals update their route maps in synchronisation during net update,
the cleaning of destroyed bus ids upon completion of net update is not synchronised and can cause
inconsistencies. The processing of net update information received over the bridge has been slightly
adjusted, and in some cases such information requires net update to be started again on the co-portal’s
bus, once the local bus has completed net update.

Correcmess properties A number of correctness properties have been defined, which must hold in a stable
situation, and which ensure that the net tree and bus trees have been spanned correctly. These have guided
the construction of an abstract version of the protocol as well as the manual proofs for the lower level
version, and have been added to the IEEE standard as a normative annex which e. g. enables debugging.

Depending on the outcome of the second recirculation ballot (which is expected to take place in early
2004), the draft standard will be finalised, or must be adjusted for yet another ballot round. In the latter
case, it is perhaps possible to add graphical descriptions for the net update protocol, in the form of state
machines. In order to conform with accepted TEEE 1394 format, these would have to be complemented
with C code, part of which is already given in the standard. Since net update is so complex, it would help
to have such graphical and precise additional explanation.

3.3 Net Panic

The basic criterion for detecting a loop in the net topology is that on a bus, there are two alpha portals, i.e.
the bus has either outgoing edges or an outgoing edge and the prime portal in one net tree. It is perhaps not
surprising that, after some net topology changes, it can also be the case that a loop exists in the network
for which the criterion does not hold: all buses on the loop have exactly one outgoing edge in the net tree
but the prime portal itself is not there. This can be recognised by observing the information of the distance
of each portal to the root bus in the net tree. There must be at least one bus with an outgoing edge with a
larger distance than a corresponding incoming edge. See the following figure.

5 2
4 3
O =@

In this situation, the net update algorithm does not terminate, but keeps being executed on consecutive
buses in the loop, and the distances keep increasing. This is a major error.

Attempts to fix net update by undirecting the incoming or the outgoing edge failed. Finally, in con-
sultation with the ballot response committee, a separate net panic algorithm was added to the net update
functionality, with the property of resetting all information in each bridge portal in the net to the initial
values. This means that each bridge is directed in the net tree and one of the two portals in each bridge is
the prime portal, and no bus tree is in use. Obviously, when net panic completes and more than one bridge
is present in the net, the spanning trees are not correct, hence net update must be started again to sort out
the net tree, followed by bus enumeration to span new bus trees.

The net panic algorithm consists of the following steps.

0. Stop bridge functionality: The portal presents itself on the bus as though it has no 1394.1 functionality.
To step 1, 2 or 3, depending on the net panic start condition (see below).
. The bus must panic: The portal broadcasts a panic message to all portals on the bus. To step 2.
2. Observe the bus: With IEEE 1394 functionality, the portal observes if all portals have now stopped
acting as a bridge. If so, to step 3, otherwise back to step 1.

—

28

3. Co-portal must panic: A panic message is sent to the co-portal to inform it that net panic has com-
pleted on this bus. To step 4.

4. Co-portal finished: As soon as a panic message has been received from the co-portal as well (this
may have happened during an earlier step), the portal initialises all net update information and starts
net update.

The net panic algorithm is started whenever one of the following is true.

Looping condition Upon completion of step 1 of the net update algorithm, it can be determined whether
the alternative looping situation mentioned above occurs (this is done by the coordinator). The net
panic condition holds if there are two edges with the same net identity, such that one is an outgoing
edge and the other is an incoming or undirected edge, and the distance of the former’s local portal is
larger than the distance of the latter’s local portal.

Net panic is started with step 0, and continued with step 1.

Unexpected prime 1If a portal receives a new net identity which is equal to its own unique identity, but
the corresponding distance is not 0, then either non-termination of net update will follow (if a loop
exists in the topology) or net update will terminate but in an inconsistent state (otherwise). In either
case, net panic must remedy the situation. Net panic is started with step 0, and continued with step 1.

Net size too large Tn very extreme and rare scenarios, neither of the above two conditions may occur
although net update does not terminate. In that case the only way to signal this is the ever-increasing
value of the distance to the root bus in the net tree. If during net update, a bridge is adjusted such that
its net identity changes, and the distance at the outgoing end exceeds the maximum net size of 1023
buses, net panic must be started. Net panic with is started step 0, and continued with step 1.

Panic message received If a portal receives a panic message while it is not executing net panic yet, it must
do so. If panic was received over the bus, then the distance is copied, net panic is started with step 0,
and continued with step 2. If received over the bridge, then the distance is copied and incremented by
1. If the new distance is less than 1023 (maximal net size), then net panic is started with step 0, and
continued with step 1, otherwise net panic is started with step 0, and continued with step 3.

Note that the net panic message carries a parameter indjcating the distance to the bus on which the algorithm

was originally started. In this way the algorithm is guaranteed to stop by respecting the maximum size of
the network.

3.4 Correctness Properties

This section contains the correctness properties that hold in stable states and express the specification or
goal of net update: correct spanning trees. The manual proof of partial correctness is based on these
properties as well as some invariants and behavioural properties which are mostly weakened versions,
expressing something about the consistency of states during net update. Termination has not yet been
shown, although care has been taken to avoid some obvious sources of non-terminating activity.

Once net panic and net update have completed and the topology is stable, the following holds. The
properties are presented at the detailed level of bridge portals, if possible preceded by an abstract descrip-
tion at the abstract graph level (which is slanted).

For each bus within the net:

- Al adjacent bridges have the consistent net identity and distance information.
All portals have the same prime, hops to prime and bus id value.
- There is one outgoing bridge iff there is no prime portal on the bus.
For exactly one portal, alpha is true.
- For the local bus tree there are only incoming and undirected edges.
Ift some portal’s bus id b is not unassigned, then route map|b] is valid for each portal.
- For each other bus tree, either it is not in use or there is exactly one outgoing edge.
For each possible bus id b not equal to any portal’s bus id, either (1) route map[b] is clean for all portals,
or (2) route map[b] is forward for one portal and valid for all other portals.

For each bridge within the net:

29

- The portals in the bridge have consistent net identity and direction information.
Both portals have the same prime and mute value.

- For each bus tree in use, each directed edge in the net tree corresponds to a directed edge in the bus tree.
If mute is false, for each bus id b, either route map[b] is clean for both portals or it is forward for one
portal and valid for the other;

- Each undirected edge in the net tree corresponds to an undirected edge in the bus tree.

If mute is true, for each bus id b, route map[b] is equal for both portals and it is either clean or valid;

- The portals in the bridge have a consistent direction.

For at most one portal alpha is true and the portal’s unique id is not equal to prime

- The portals in the bridge have consistent distance information.

If mute is false, for one portal alpha is true, the portal’s unique id is not equal to prime, and its hops to
prime is 1 greater than its co-portal’s hops to prime.

For each portal within a bridge:

- If mute is true, alpha is true only if the portal’s unique id is equal to prime
- The prime portal has distance 0.
If the portal’s unique id is equal to prime, then alpha is true and hops to prime is 0.

References

(11 WH.J. Feijen and A.J.M. van Gasteren. On a method of multiprogramming. Springer-Verlag, 1999,

[2] N. Goga and J.M.T. Romijn. Guiding Spin simulation. Technical report, 2004. Manuscript. Available
onhttp://www.win.tue.nl/oas/en_index.html.

[3] The Institute of Electrical And Electronics Engineers, Inc. IEEE Standard for a High Performance
Serial Bus, August 1996. IEEE Std 1394-1995.

[4] The Institute of Electrical And Electronics Engineers, Inc. IEEE Standard for a High Performance
Serial Bus — Amendment 1, December 2001. IEEE Std 1394a-2000.

[5] The Institute of Electrical And Electronics Engineers, Inc. IEEE P1394.1 Draft Standard for High
Performance Serial Bus Bridges, November 2003. Version 1.05.

[6] L.A. van Langevelde, J.M.T Romijn, and N. Goga. Founding firewire bridges through promela proto-
typing. In I7th International Parallel and Distributed Processing Symposium (IPDPS), Sth Interna-
tional Workshop on Formal Methods for Parallel Programming: Theory and Applications (FMPPTA).
IEEE Computer Society Press, 2003.

{71 A.J. Mooij, N. Goga, and J.W. Wesselink. A distributed spanning tree algorithm for topology-aware
networks. In Proceedings of the Conference on Design, Analysis, and Simulation of Distributed
Systems 2004. The Society for Modeling & Simulation International (SCS), 2004. To appear.

[8] A.J. Mooij and J.W. Wesselink. A formal analysis of a dynamic distributed spanning tree algorithm.
Computer Science Report 03-16, Technische Universiteit Eindhoven, Eindhoven, December 2003.

[9] R. Perlman. An algorithm for distributed computation of a spanning tree in an extended LAN. ACM
SIGCOMM Computer Communication Review, 15(4), September 1985.

[10] R. Periman. Interconnections: bridges, routers, switches, and internetworking protocols. Addison-
Wesley, 2000.

Pages 31-41 have been deleted for privacy reasons.

8 Statuten

Artikel 1.

1. De vereniging draagt de naam: ”Nederlandse Vereniging voor Theoretische Informatica”.

2. Zij hceeft haar zetel te Amsterdam.

3. De vereniging is aangegaan voor onbepaalde tijd.

4. De vereniging stelt zich ten doel de theoretische informatica te bevorderen haar beoefening en
haar tocpassingen aan te moedigen.

Artikel 2.

De vereniging kent gewone leden en ereleden. Ereleden worden benoemd door het bestuur.
Artikel 3.

De vereniging kan niet worden ontbonden dan met toestemming van tenminste drievierde van het
aantal gewone leden.

Artikel 4.

Het verenigingsjaar is het kalenderjaar.

Artikel 5.

De vereniging tracht het doel omschreven in artikel 1 te bereiken door

a. het houden van wetenschappelijke vergaderingen en het organiseren van symposia en congres-
sen;

b. het uitgeven van een of meer tijdschriften, waaronder een nieuwsbrief of vergelijkbaar informa-
tiemedium;

¢. en verder door alle zodanige wettige middelen als in cnige algemene vergadering goedgevonden
zal worden.

Artikel 6.

1. Het bestuur schrijft de in artikel 5.a bedoelde bijeenkomsten uit cn stelt het programma van
elk van deze bijeenkomsten samen.

2. De redacties der tijdschriften als bedoeld in artikel 5.b worden door het bestuur benoemd.
Artikel 7.

Iedere natuurlijke persoon kan lid van de vereniging worden. Instellingen hebben geen stemrecht.
Artikel 8.

Indien enig lid niet langer als zodanig wenst te worden beschouwd, dient hij de ledenadministratie
van de vereniging daarvan kennis te geven.

Artikel 9.

Teder lid ontvangt een exemplaar der statuten, opgenomen in de nieuwsbrief van de vereniging.
Een exemplaar van de statuten kan ook opgevraagd worden bij de secretaris. leder lid ontvangt
de tijdschriften als bedoeld in artikel 5.b.

Artikel 10.

Het bestuur bestaat uit tenminste zes personen die direct door de jaarvergadering worden gekozen,
voor ccn periode van dric jaar. Het bestuur heeft het recht het precieze aantal bestuursleden te
bepalen. Bij de samenstelling van het bestuur dient rekening gechouden te worden met de wense-
lijkheid dat vertegenwoordigers van de verschillende werkgebieden van de theoretische informatica
in Nederland in het bestuur worden opgenomen. Het bestuur kiest uit zijn midden de voorzitter,
secretaris en penningmeester.

Artikel 11.

Eens per drie jaar vindt een verkiezing plaats van het bestuur door de jaarvergadering. De
door de jaarvergadering gekozen bestuursleden hebben een zittingsduur van maximaal twee maal
drie jaar. Na deze periode zijn zij niet terstond herkiesbaar, met uitzondering van secretaris en
penningmeester. De voorzitter wordt gekozen voor de tijd van drie jaar en is na afloop van zijn
ambtstermijn niet onmiddellijk als zodanig herkiesbaar. In zijn functie als bestuurslid blijft het
in de vorige alinea bepaalde van kracht.

Artikel 12.

Het bestuur stelt de kandidaten voor voor eventucle vacatures. Kandidaten kunnen ook voorge-
steld worden door gewone leden, minstens een maand voor de jaarvergadering via de sccretaris.
Dit dient schriftelijk te gebeuren op voordracht van tenminste vijftien leden. In het geval dat

42

het aantal kandidaten gelijk is aan het aantal vacatures worden de gestelde kandidaten door de
jaarvergadering in het bestuur gekozen geacht. Indien het aantal kandidaten groter is dan het
aantal vacatures wordt op de jaarvergadering door schriftelijke stemming beslist. Teder aanwezig
lid brengt een stem uit op evenveel kandidaten als er vacatures zijn. Van de zo ontstane rang-
schikking worden de kandidaten met de meeste punten verkozen, tot het aantal vacatures. Hierbij
geldt voor de jaarvergadering een quorum van dertig. In het geval dat het aantal aanwezige leden
op de jaarvergadering onder het quorum ligt, kiest het zittende bestuur de nieuwe leden. Bij gelijk
aantal stemmen geeft de stem van de voorzitter (of indien niet aanwezig, van de secretaris) de
doorslag.

Artikel 13.

Het bestuur bepaalt elk jaar het precieze aantal bestuursleden, mits in overeenstemming met artikel
10. In het geval van aftreden of uitbreiding wordt de 7o ontstanc vacature aangekondigd via mailing
of nicuwsbricf, minstens twee maanden voor de cerstvolgende jaarvergadering. Kandidaten voor de
ontstanc vacatures worden voorgesteld door bestuur en gewone leden zoals bepaald in artikel 12.
Bij aftreden van bestuursleden in cerste of tweede Jjaar van de driejarige cyclus worden de vacatures
vervuld op de eerstvolgende jaarvergadering. Bij aftreden in het derde jaar vindt vervulling van de
vacatures plaats tegelijk met de algemene driejaarlijkse bestuursverkiezing. Voorts kan het bestuur
beslissen om vervanging van een aftredend bestuurslid te laten vervullen tot de eerstvolgende
jaarvergadering. Bij uitbreiding van het bestuur in het eerste of tweede Jjaar van de cyclus worden
de vacatures vervuld op de eerstvolgende Jjaarvergadering. Bij uitbreiding in het derde jaar vindt
vervulling van de vacatures plaats tegelijk met de driejaarlijkse bestuursverkiezing. Bij inkrimping
stelt het bestuur vast welke leden van het bestuur zullen aftreden.

Artikel 14.

De voorzitter, de secretaris en de penningmeester vormen samen het dagelijks bestuur. De voor-
zitter leidt alle vergaderingen. Bij afwezigheid wordt hij vervangen door de secretaris en indien
ook deze afwezig is door het in jaren ondste aanwezig lid van het bestuur. De secretaris is be-
last met het houden der notulen van alle huishoudelijke vergaderingen en met het voeren der
correspondentie.

Artikel 15.

Het bestuur vergadert zo vaak als de voorzitter dit nodig acht of dit door drie zijner leden wordt
gewenst,.

Artikel 16.

Minstens cenmaal per jaar wordt door het bestuur cen algemenc vergadering bijeengerocpen; één
van deze vergaderingen wordt explicict aangeduid met de naam van Jjaarvergadering; deze vindt
plaats op een door het bestuur te bepalen dag en plaats.

Artikel 17.

De jaarvergadering zal steeds gekoppeld zijn aan een wetenschappelijk symposium. De op het
algemene gedeelte vaan de jaarvergadering te behandelen onderwerpen zijn

a. Verslag door de secretaris;

b. Rekening en verantwoording van de penningmeester;

c. Verslagen van de redacties der door de vereniging uitgegeven tijdschriften;

d. Eventuele verkiezing van bestuursleden;

¢. Wat verder ter tafel komt. Het bestuur is verplicht cen bepaald punt op de agenda van cen
algemene vergadering te plaatsen indien uiterlijk vier weken van te voren tenminste vijfticn gewone
leden schriftelijk de wens daartoe aan het bestuur te kennen geven.

Artikel 18.

Deze statuten kunnen slechts worden gewijzigd, nadat op cen algemenc vergadering cen commissic
voor statutenwijziging is benoemd. Deze commissie doct binnen zes maanden haar voorstellen
via het bestuur aan de leden tockomen. Gedurende drie maanden daarna kunnen amendementen
schriftelijk worden ingediend bij het bestuur, dat deze ter kennis van de gewone leden brengt,
waarna een algemene vergadering de voorstellen en de ingediende amendementen behandelt. Ter
vergadering kunnen nieuwe amendementen in behandeling worden genomen, die betrekking heb-
ben op de voorstellen van de commissie of de schriftelijk ingediende amendementen. Eerst wordt
over elk der amendementen atzonderlijk gestemd; een amendement kan worden aangenomen met

43

gewone meerderheid van stemmen. Het al dan niet geamendeerde voorstel wordt daarna in zijn
geheel in stemming gebracht, tenzij de vergadering met gewone meerderheid van stemmen be-
sluit tot afzonderlijke stemming over bepaalde artikelen, waarna de resterende artikelen in hun
geheel in stemming gebracht worden. In beide gevallen kunnen de voorgestelde wijzigingen slechts
worden aangenomen met een meerderheid van tweederde van het aantal uitgebrachte stemmen.
Aangenomen statutenwijzigingen treden onmiddellijk in werking.

Artikel 19.

Op een vergadering worden besluiten genomen bij gewone meerderheid van stemmen, tenzij deze
statuten anders bepalen. Elk aanwezig gewoon lid heeft daarbij het recht een stem uit te bren-
gen. Stemming over zaken geschiedt mondeling of schriftelijk, die over personen met gesloten
briefjes. Uitsluitend bij schriftelijke stemmingen worden blanco stemmen gerekend geldig te zijn
uitgebracht.

Artikel 20.

a. De jaarvergadering geeft bij huishoudelijk reglement naderc regels omtrent alle onderwerpen,
waarvan de regeling door de statuten wordt vereist, of de jaarvergadering gewenst voorkomt.

b. Het huishoudelijk reglement zal geen bepalingen mogen bevatten die afwijken van of die in
strijd zijn met de bepalingen van de wet of van de statuten, tenzij de afwijking door de wet of de
statuten wordt toegestaan.

Artikel 21.

In gevallen waarin deze statuten niet voorzien, beslist het bestuur.

44

	Text1: Pages 31-41 have been deleted for privacy reasons.

