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1 Van de Redactie

Beste NVTI leden,

Met genoegen bieden wij u bij deze de 9¢ NVTI Nieuwsbrief aan (het eerste lustrum is volgend
Jjaar een feit). Hoewel de redactie de nodige personele wijzigingen heeft ondergaan, is de opzet
zoals u die gewend bent. Naast een overzicht van het huidige bestuur, een aankondiging van de
Jaarlijkse NVTI Theoriedag met samenvattingen van de lezingen, bevat dit nummer nieuws van de
onderzoeksscholen, en een aantal wetenschappelijke bijdragen. Bij deze onze hartelijke dank aan
de auteurs van de diverse bijdragen! Deze Nieuwsbrief is, net als de Theoriedag, niet mogelijk zon-
der de steun van NWO-EW, Elsevier Publishing Company en de onderzoeksscholen SIKS, OzsL,
en IPA. Namens de NVTI-leden onze hartelijke dank daarvoor. Verder is de de ondersteuning van
het CWI van groot belang, met name bij het vervaardigen van de nieuwsbrief. Tenslotte willen
wij de afgetreden redactieleden Mieke Brune, Jan-Willem Klop en Jan Rutten enorm bedanken
voor hun inzet voor de NVTI, en de Nieuwsbrief in het bijzonder.

De redactie,

Susanne van Dam (Susanne.van.Dam@cwi.nl)
Joost-Pieter Katoen (katoen@cs.rwth-aachen.de)
Joost Kok (joost@liacs.nl)

Jaco van de Pol (Jaco.van.de.Pol@cwi.nl)

Femke van Raamsdonk (femke@cs.vu.nl)

2 Samenstelling Bestuur

Prof. dr. Jos Baeten (TU/e)

Dr. Hans Bodlaender (UU)

Prof. dr. Harry Buhrman (CWI en UvA)
Prof. dr. ir. Joost-Pieter Katoen (RWTH en UT)
Prof. dr. Joost Kok (RUL) voorzitter

Prof. dr. John-Jules Meyer (UU)

Dr. Jaco van de Pol (CWI en TU/e) secretaris
Dr. Femke van Raamsdonk (VU)

Prof. dr. Grzegorz Rozenberg (RUL)

Prof. dr. Gerard Renardel de Lavalette (RUG)
Dr. Leen Torenvliet (UvA)

3 Van de voorzitter

Geacht NVTLlid,

Het is mij een genoegen om als nieuwe voorzitter van de NVTI een stukje voor de nieuwsbrief te
schrijven.

Veel is nieuw bij de NVTI maar veel ook niet. Er is een nieuw “jong” bestuur dat met veel energie
aan de slag is gegaan. Tegelijkertijd is voor de theoriedag het oude vertrouwde format gevolgd:
vier prominente sprekers langs twee dimensies: twee uit het buitenland en twee uit het binnenland,
twee sprekers over algoritmen en complexiteit en twee sprekers over semantiek en logica.

Op dit moment wordt de website van de vereniging (www.cwi.nl/orgs/NVTI/ ) vernieuwd. In
Google staan we nu nog op plaats twee, maar we gaan de strijd met het National Veterans’
Training Institute aan!



Ik hoop dat iedereen in de gelegenheid is om naar de theoriedag te komen. Sponsors (NWO,
Elsevier, onderzoekscholen OzL, IPA, SIKS) maken de theoriedag weer mogelijk. En als u gaat,
maak ook reclame in uw omgeving: wie weet zijn er wel een paar collega’s die theorie een warm
hart toedragen en graag meegaan!

Joost Kok, voorzitter NVTT

4 Theoriedag 2005

Theoriedag 2005 van de NVTI
(Nederlandse Vereniging voor Theoretische Informatica)

Vrijdag 4 maart 2005
Vergadercentrum Hoog Brabant, Utrecht

Het is ons een genoegen u uit te nodigen tot het bijwonen van de Theoriedag 2005 van de NVTI,
de Nederlandse Vereniging voor Theoretische Informatica, die zich ten doel stelt de theoretische
informatica te bevorderen en haar beoefening en toepassingen aan te moedigen. De Theoriedag
2005 zal gehouden worden op vrijdag 4 maart 2005, in Vergadercentrum Hoog Brabant te Utrecht,
gelegen in winkelcenrum Hoog Catherijne, op enkele minuten loopafstand van CS Utrecht, en is
een voortzetting van de reeks jaarlijkse bijeenkomsten van de NVTI die tien Jjaar geleden met de
oprichtingsbijeenkomst begon.

Evenals vorige jaren hebben wij een aantal prominente sprekers bereid gevonden deze dag gestalte
te geven met voordrachten over recente en belangrijke stromingen in de theoretische informatica.
Naast een wetenschappelijke inhoud heeft de dag ook een informatief gedeelte, in de vorm van een
algemene vergadering waarin de meest relevante informatie over de NVTI gegeven zal worden.

Programma (samenvattingen volgen beneden)
9.30-10.00:  Ontvangst met koffie
10.00-10.10:  Opening

10.10-11.00:  Lezing Prof. Dr. F. van Harmelen (VU)
Titel: Anytime logical inference:
Better half an answer in time than a perfect answer too late

11.00-11.30: Koflie
11.30-12.20:  Lezing Prof. Dr. A K. Lenstra (Bell Labs en TU/e)
Titel: Information security, cryptology and factorizing
12.20-12.50: Korte Presentaties
12.50-14.10:  Lunch (Zie beneden voor registratie)
14.10-15.00:  Lezing Prof. Dr. R. Cramer (CWI en Universiteit Leiden)

Titel: Compressed pseudo-random secret sharing and its applications
to practical secure multi-party computation

15.00-15.20: Thee

15.20-16.10:  Lezing Dr. E. Meijer (Microsoft Research)
Titel: Helping Programmers Program Better:
Transferring Theory into Practice and Back

16.10-16.40:  Algemene ledenvergadering NVTT



Lunchdeelname

Het is mogelijk aan een georganiseerde lunch deel te nemen; hiervoor is aanmelding verplicht. Dit
kan per email of telefonisch bij Susanne van Dam (susanne@cwi.nl, 020-592 4189), tot een week
voor de bijeenkomst (25 februari). De kosten kunnen ter plaatse voldaan worden; deze bedragen
ongeveer Euro 15. Wij wijzen erop dat in de onmiddellijke nabijheid van de vergaderzaal ook
uitstekende lunchfaciliteiten gevonden kunnen worden, voor wie niet aan de georganiseerde lunch
wenst deel te nemen.

Lidmaatschap NVTI

Alle leden van de voormalige WTI (Werkgemeenschap Theoretische Informatica) zijn automatisch
lid van de NVTI geworden. Aan het lidmaatschap zijn geen kosten verbonden; u krijgt de aan-
kondigingen van de NVTT per email of anderszins toegestuurd. Was u geen lid van de WTI en
wilt u lid van de NVTI worden: u kunt zich aanmelden bij Susanne van Dam (susanne@cwi.nl},
met vermelding van de relevante gegevens (naam, voorletters, affiliatie indien van toepassing,
correspondentieadres, email, URL, telefoonnummer).

Steun

De activiteiten van de NVTI worden mede mogelijk gemaakt door de ondersteuning (financieel
en anderszins) van de volgende instellingen: NWO/EW, CWI, Onderzoeksscholen OzsL, IPA en
SIKS, Elsevier Science B.V.

Samenvattingen van de lezingen

Informatie beveiliging, cryptologie, en factorizeren
Spreker: Arjen K. Lenstra (Bell Labs en TUe)

Door het toenemend gebruik van electronische communicatie wordt informatie beveiliging een
steeds populairder onderwerp. Dat is koren op de molen van wetenschappers die zich graag met
mogelijk verwant onderzoek bezig houden. In deze voordracht belicht ik de mate van belang van
een van die onderzoeksgebieden, cryptologie, en ga vervolgens nader in op de voortgang op het
gebied van integer factorizatie methoden.

Compressed pseudo-random secret sharing and its applications to practical secure
multi-party computation

Spreker: Ronald Cramer (CWI and Mathematical Institute, Leiden University)

In this talk we argue that pseudo-random secret sharing schemes can be used to limit round com-
plexity of secure multi-party computation protocols. At the same time we ensure that commu-
nication complexity does not increase in the process, by employing new compression techniques
for pseudo-random secret sharing. A main application of these techniques is a non-interactive
threshold version of the Cramer-Shoup encryption scheme.

Joint work with Ivan Damgaard (Aarhus University) and Yuval Ishai (Technion, Haifa)

Anytime logical inference: Better half an answer in time than a perfect answer too
late

Spreker: Frank van Harmelen (Vrije Universiteit, Amsterdam)

Classical logical inference characterises perfect modes of reasoning. Inference procedures give
either perfect results or no results at all. The implementations of such inference procedures only

give answers at the very end of their computation with no intermediate “currently best available
answer”.



For many reasons (both practical and theoretical), it would be attractive to have notions of logical
inference which can provide approximate answers, which can compute such answers incrementally,
and which allow an anytime trade-off between cost and quality.

In this presentation, I will first motivate the need for such approximate and anytime logics, I will
describe a few proposals for such logics, and illustrate their use in various inference problems.

Helping Programmers Program Better: Transferring Theory into Practice and Back
Spreker: Erik Meijer (Microsoft)

As Donald Knuth remarks “Theory and practice are not mutually exclusive; they are intimately
connected. They live together and support each other.” This is (or should be) especially true in
the context of programming languages. About four years ago, I left research and moved to work
for Microsoft (product group, not research) with the hope to transfer programming language and
type theory to practice and to find new inspiration for theory from real problems that occur in
practice.

In this talk, I will report about my (first-hand) experiences so far, of how within Microsoft theory
is applied in real shipping software ranging from the low-level execution engine/virtual machine
(the CLR), to libraries/APIs (the .Net framework), up to the level of programming languages (C#,
Comega, and Visual Basic). Examples will include security, concurrency, generics, higher-order
functions, type-system unification of relations, XML and objects, and in particular the efficient
implementation and formalization of co-inductive lazy imperative streams.

The talk will be guaranteed 100% free of marketing bullshit, but it will contain both code *and*
greek symbols and horizontal lines.



5 Mededelingen van de onderzoekscholen

www.win.tue.nl/ipa/

Institute for Programming research and Algorithmics

The research school IPA (Institute for Programming Research and Algorithmics) educates re-
searchers in the field of programming research and algorithmics. This field encompasses the study
and development of formalisms, methods and techniques to design, analyse, and construct software
systems and components. IPA has three main research areas: Algorithmics & Complexity, Formal
Methods, and Software Technology. Researchers from eight universities (University of Nijmegen,
Leiden University, Technische Universiteit Eindhoven, University of Twente, Utrecht University,
University of Groningen, Vrije Universiteit Amsterdam, and the University of Amsterdam), the
CWI and Philips Research (Eindhoven) participate in IPA. In 1997, IPA was formally accredited
by the Royal Dutch Academy of Sciences (KNAW). In 2002, this accreditation was extended for
a period of five years.

On the European front, IPA cooperates with the research schools BRICS (Denmark), TUCS
(Finland), UKII (United Kingdom), IP (Italy), GEFI (Germany), and FI (France) in the European
Educational Forum (EEF).

New scientific director After more than 8 years in office, Jos Baeten has stepped down as
scientific director of IPA. Jos is one of the founding fathers of IPA, and under his supervision the
Institute has grown to encompass 25 research groups (of eight Dutch universities and the CWI
in Amsterdam), with over 250 people participating, including around a hundred Ph.D. students.
IPA is very grateful for everything Jos Baeten has done to establish and develop the Institute.
As of May 1, Mark de Berg is the new scientific director of IPA. Mark is head of the Algorithms
Groups of the Department of Mathematics and Computer Science of the TU/e. He received the
prestigious VICI-grant of the NWO for his innovative work in computational geometry.

New research group joins IPA This June, the research group Biomodeling and Informatics
(BMI) of the Department of Biomedical Engineering of the Technische Universiteit Eindhoven
joined TPA. The group, founded by Peter Hilbers in 2001, focusses on the modeling of processes
in living systems. Besides the development of methods and tools for biomedical modeling, it is
concerned with building specific biomedical models and implementing them by means of algorithms
and simulations. IPA welcomes the BMI group, which will enrich the Institute’s field of research.

Activities in 2004

IPA has two multi-day events per year, the Lentedagen and the Herfstdagen, which focus on
a particular subject. In the 2002 - 2006 period, each of the Herfstdagen will be dedicated to
one of IPA’s four so-called application areas: Networked Embedded Systems, Security, Intelligent



Algorithms, and Compositional Programming Methods. In 2004, the Herfstdagen were dedicated
to Intelligent Algorithms, and the Lentedagen were on Hybrid Systems.

Lentedagen April 14 - 16, De Kapellerput, Heeze

More and more systems emerge in which discrete digital controllers control continuous physical
processes. Such systems are called ‘Hybrid Systems’, because they combine discrete and continuous
behaviour. Although there are methods for understanding both forms of behaviour separately
(continuous behaviour in control science and system theory, and discrete behaviour in computer
science), the proper functioning of a hybrid system critically depends on their interaction. Hence,
the correct and efficient design of such systems requires expertise that is spread over different
research and engineering communities.

Over the past few years, IPA-researchers working in the area of embedded systems have made
contact with researchers from the communities studying behaviour of continuous systems, and
started to create a common theoretical basis for the understanding of hybrid systems. The IPA
Herfstdagen presented the research currently performed in and around IPA on formalisms, tools,
and techniques for the modeling, analysis, validation, and verification of hybrid systems. The pro-
gram was composed by Jozef Hooman (ESI/KUN), Rom Langerak (UT), Michel Reniers (TU/e),
in cooperation with Arjan van der Schaft (UT, research school DISC). Abstracts, hand-outs, and
papers, are available through the website at www.win.tue.nl/ipa/archive/ springdays2004/.

Herfstdagen November 22-26, Tulip Inn, Callantsoog

Algorithms are vital building blocks for many software systems. The ever widening range of ap-
plication for systems with algorithmic components in both industry and science brings different
requirements to the fore than those traditionally studied in algorithmics research. For instance,
algorithmic systems can be required to be ‘always on’, to be aware of their (unpredictable) sur-
roundings, or to adapt their behaviour to that of their users over time. The Herfstdagen aimed to
provide an overview of research in and around IPA on algorithms with these and other ‘intelligent’
properties. The program was composed by Emile Aarts (TU/e, Philips Research), Joost Kok
(UL), and Jan van Leeuwen (UU).

The various sessions in the program addressed application domains that inspire new ap-
proaches, concepts and techniques because of the requirements algorithms have to meet. In Sensor
Networking, for instance, individual sensor nodes need to become aware of where they are in rela-
tion to other nodes to build a communications network, and this network has to be able to adapt
to changing conditions. In Ambient Intelligence, services are developed that try to optimize the
experience of the user, rather than a system parameter, by adapting to the user’s sensory capabil-
ities and personal preferences. In the construction of Software Agents for negotation situations,
algorithms are used to provide the negotiation strategies, drawing inspiration from game theory
and economic theory. Other sessions were dedicated to data mining, machine learning, the seman-
tic web, and human-algorithm interaction. Keynote speakers were: Roger Wattenhofer (ETHZ),
Hannu Toivonen (Helsinki) and Berthold Vécking (RWTH Aachen). Abstracts, hand-outs, and
papers are available through the website at www.win.tue.nl/ipa/ archive/falldays2004/.

In addition to organising the Lentedagen and Herfstdagen, IPA sponsored three further events:
the 8th Dutch Proof Tools Day (July 9, University of Nijmegen), the first international conference
on Quantitative Evaluation of Systems (QEST’04, September 27 - 30, University of Twente), and
the third international symposium on Formal Methods for Components and Objects (FMCO 2004,
November 2 - 5, Lorentz Center, Leiden University).

IPA Ph.D. Defenses in 2004

Georgi Jojgov (TU/e, 5 April), Incomplete Proofs and Terms and Their Use in Interactive
Theorem Proving. Promotores: prof.dr. J.C.M. Baeten, prof.dr. H.P. Barendregt. Co-promotor:
dr. J.H. Geuvers. IPA-Dissertation Series 2004-02.



Wil Michiels (TU/e, 8 April), Performance Ratios for the Differencing Method. Promotores:
prof.dr. E.H.L. Aarts, prof.dr. J. van Leeuwen. Co-promotor: dr.ir. J.H.M. Korst. IPA-Dissertation
Series 2004-01.

Sebastian Maneth (UL, 27 May), Models of Tree Translation. Promotor: prof.dr. G. Rozenberg.
Co-promotor: dr. J. Engelfriet. [PA-Dissertation Series 2004-04.

Yuechen Qian (TU/e, 2 June), Data Synchronization and Browsing for Home Environments.
Promotores: prof.dr. L.G.M. Feijs, prof.dr. J.C.M. Baeten. Co-promotor: dr.ir. M.P. Bodlaender.
IPA-Dissertation Series 2004-05.

Pierluigi Frisco (UL, 3 June), Theory of Molecular Computing — Splicing and Membrane systems.
Promotor: prof.dr. G. Rozenberg. Co-promotor: dr. H.J.H. Hoogeboom. IPA-Dissertation Series
2004-03.

Falk Bartels (VUA, 3 June), On Generalised Coinduction and Probabilistic Specification Formats
— Distributive Laws in Coalgebraic Modelling. Promotores: prof.dr. J.J.M.M. Rutten, prof.dr.
J.C.M. Baeten. IPA-Dissertation Series 2004-06.

Luis Cruz-Filipe (KUN, 15 June), Constructive Real Analysis: a Type-Theoretical Formalization
and Applications. Promotor: prof.dr. H.P. Barendregt. Co-promotor: dr. J.H. Geuvers. IPA-
Dissertation Series 2004-07.

Enrico Gerding (TU/e, 6 July), Autonomous Agents in Bargaining Games: An Evolutionary
Investigation of Fundamentals Strategies, and Business Applications. Promotores: prof.dr.ir. J.A.
La Poutré, prof.dr. HM. Amman. IPA-Dissertation Series 2004-08.

Andres Loh (UU, 2 September 2004), Ezploring Generic Haskell. Promotores: prof.dr. J.Th.
Jeuring, prof.dr. S.D. Swierstra. IPA-Dissertation Series 2004-11.

Milad Niqui (KUN, 27 September 2004), Formalising Ezact Arithmetic: Representations, Algo-
rithms and Proofs. Promotor: prof.dr. H.P. Barendregt. Co-promotor: dr. J.H. Geuvers. IPA-
Dissertation Series 2004-10.

Reinder Bril (TU/e, 29 September), Real-time Scheduling for Media Processing Using Condi-
tionally Guaranteed Budgets. Promotores: prof.dr. E.H.L. Aarts, prof.dr. G. Fohler. Co-promotor:
dr.ir. W.F.J. Verhaegh. TPA-Dissertation Series 2004-13.

Ingrid Flinsenberg (TU/e, 30 September), Route Planning Algorithms for Car Navigation.
Promotores: prof.dr. E.H.L. Aarts, prof.dr. J. van Leeuwen. Co-promotor: dr. J.H. Verriet. IPA-
Dissertation Series 2004-12.

Esko Dijk (TU/e, 6 October), Indoor Ultrasonic Position Estimation Using a Single Base Station.
Promotores: prof.dr.ir. C.H. van Berkel, prof.dr.ir. JJW.M. Bergmans. Co-promotor: dr. R.M.
Aarts. IPA-Dissertation Series 2004-16.

Floortje Alkemade (TU/e, 7 October), Evolutionary Agent-Based Economy. Promotores:
prof.dr.ir. J.A. La Poutré, prof.dr. H.M. Amman. IPA-Dissertation Series 2004-15.

Nicolae Goga (TU/e, 7 October), Control and Selection Techniques for the Automated Testing

of Reactive Systems. Promotores: prof.dr.ir. L.M.G. Feijs, prof.dr. H. Brinksma. Copromotor: dr.
S. Mauw. IPA-Dissertation Series 2004-09.

Martijn Schrage (UU, 15 October), Proxima - A presentation-oriented editor for structured
documents. Promotores: prof.dr. S.D. Swierstra, prof.dr. J.Th. Jeuring, prof. L.G.L.T. Meertens.
IPA-Dissertation Series 2004-18.

Jun Pang (VUA, 26 October), Formal Verification of Distributed Systems. Promotor: prof.dr.
W.J. Fokkink. IPA-Dissertation Series 2004-14.

Simona Orzan (VUA, 25 November), On Distributed Verification and Verified Distribution.

Promotor: prof.dr. W. Fokkink. Copromotor: dr. J.C. van de Pol. TPA-Dissertation Series 2004-
17.



Evgeny Eskenazi and Alexander Fyukov (TU/e, 6 December), Quantitative Prediction of
Quality Attributes for Component-Based Software Architectures. Promotores: prof.dr.ir. J.F.
Groote, prof.dr.dipl.ing. D.K. Hammer. IPA-Dissertation Series 2004-19.

Barend van den Nieuwelaar (TU/e, 7 December), Supervisory Machine Control by Predictive-
Reactive Scheduling. Promotores: prof.dr.ir. J.E. Rooda, prof.dr. J.C.M. Baeten.Copromotor:
dr.ir. J.M. van de Mortel-Fronczak. IPA-Dissertation Series 2004-21.

Pieter Cuijpers (TU/e, 9 December), Hybrid Process Algebra. Promotores: prof.dr.ir. J.F.
Groote, prof.dr.ir. P.P.J. van den Bosch. Co-promotor: dr.ir. M.A. Reniers. IPA-Dissertation
Series 2004-20.

100th dissertation in series Nicolae Goga’s thesis Control and Selection Te echnigues for the
Automated Testing of Reactive Systems is the 100th title in the IPA dissertation series which
openend with the thesis The State Operator in Process Algebra by Javier Blanco in 1996.

Activities in 2005

The themes for the major IPA-events of 2005 are known: the Lentedagen will be on Software
Architecture and the Herfstdagen will be dedicated to Security. In addition, IPA is planning to
stage two of its three Basic Courses this year. The Basic Courses are intended to provide Ph.D.
students with an overview of IPA’s major research fields: Algorithms and Complexity, Formal
Methods, and Software Technology.

The first Basic Course and the Lentedagen have a definite schedule and location. More infor-
mation on all upcoming activities will become available through the IPA web site.

Basic Course on Algorithms and Complexity January 31 - February 4, TU/e.

This Basic Course, which is hosted by IPA at the Technische Universiteit Eindhoven, focusses on
five subjects areas in algorithmics, where succesfull research is being conducted by groups in IPA.
From each of these areas, operations research, graph and network algorithms, natural computation,
and alternative computational models, a topic is taken to which an entire course day is dedicated.
The final course day will addres an interesting application area for algorithmic techniques, in this
case bio informatics. See: www.win.tue.nl/ipa/activities/algbasiccourse2005/.

Lentedagen on Software Architecture March 30 - April 1, De Korenbeurs, Made.

This year’s Lentedagen will be dedicated to software architecture, in particular for distributed
applications. After having looked at component-based architectures (Herfstdagen 1999), object-
oriented architectures (Lentedagen on UML, 2000), and peer-to-peer systems (Lentedagen on
Middelware, 2002), this year’s Lentedagen will address recent developments in this area such as
service-oriented architectures. See: www.win.tue.nl/ipa/activities/ springdays2005/.

Addresses

Visiting address Postal address
Technische Universiteit Eindhoven IPA, Fac. of Math. and Comp. Sci.
Main Building HG 7.22 Technische Universiteit Eindhoven
Den Dolech 2 P.O. Box 513
5612 AZ Eindhoven 5600 MB Eindhoven
The Netherlands The Netherlands

tel. (+31)-40-2474124 (IPA Secretariat)
fax (+31)-40-2475361

e-mail ipa@tue.nl

url www.win.tue.nl/ipa/



The School for Information and Knowledge Systems (SIKS)
in 2004

by Richard Starmans

Introduction

SIKS is the Dutch Research School for Information and Knowledge systems. It was founded in 1996
by researchers in the field of Artificial Intelligence, Databases & Information Systems and Software
Engineering. Its main concern is research and education in the field of information and computing
sciences, more particularly in the area of information and knowledge systems (IKS). SIKS is an
interuniversity research school that comprises 12 research groups from 10 universities and CWI.
When SIKS received its accreditation by KNAW in 1998, only 35 Ph.D. students and about 70
research fellows were involved in the school. Currently, over 300 researchers are active, including
140 Ph.D.-students. The Vrije Universiteit in Amsterdam is SIKS’ administrative university. The
office of SIKS is located at Utrecht University In June 2003 SIKS was reaccreditated by KNAW
for another period of 6 years.

Activities

We here list the main activities (co-)organized or (co-)financed by SIKS in 2004. We distinguish
basic courses, advanced courses and other acitivities (including masterclasses, workshops, oneday
seminars, conferences and research colloquia)

Basic courses

Research methods and methodology for IKS, February 09-11, 2004 Het Bosgoed, Lunteren
Scientific directors: dr. H. Weigand (UvT), prof. dr. R. Wieringa (UT),
prof. dr. J-J.Ch. Meyer (UU), dr. R. Starmans (UU)

Interactive Systems , May 14 - 16, 2004, Huize Bergen, Vught
Scientific director: Prof. dr. G. van der Veer (VU)

Architectures for IKS, May 16 - 18, 2004, Huize Bergen, Vught
Scientific director: Prof. dr. E. Proper (RUN)

Information and Organisation, December 06-08, 2004, Huize Bergen, Vught
Scientific director: dr. H. Weigand (UvT)

Information Retrieval, December 08-10, 2004, Huize Bergen, Vught
Scientific director: prof. dr. T. van der Weide (RUN)

Advanced courses

Spring course on Datamining, April 13-17, 2004, Maastricht
Course directors: Dr. E. Smirnov (UM), Dr. J. Donkers(UM), Prof. dr. E.O. Postma (UM)

“Mobile Commerce” (m-Commerce) April 21-22, 2004, Amsterdam
Course directors: prof. dr. H. Akkermans (VU), Dr. N. Sadeh (VU)

“The semantic web”, November 22 - 23, 2004, Conference center Woudschoten, Zeist.
Course directors: Prof. dr. F van Harmelen (VU), Prof. dr. G. Schreiber (VU)
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Other activities
e SIKS/ICS Symposium on Agent Organizations, January 13, 2004, Utrecht
® Paradoxaal, een symposium over paradoxen, March, 03, 2004, Utrecht
® Theoriedag 2004 van de NVTI, March 05, 2004, Utrecht
e SIKS-day 2004, March 12 2004, Castle of Zeist, Zeist
e Workshop: Intelligent Risk Analysis & Management, May, 19, 2004, Rotterdam
¢ Workshop on XML Databases and Information Retrieval, June 21, 2004 Enschede
e Symposium “Agents Everywhere”, July 02, 2004, Enschede
* Social Intelligence Design 2004, July 05-07, Enschede
o AH2004; conference on Adaptive Hypermedia 2004, August 23-26, 2004, Eindhoven
e ICEC 2004; conference on Entertainment Computing, September 01-03, 2004, Eindhoven
e SIKS/ICS Master Class on Agent Societies, October 13, 2004, Utrecht
e Symposium “AI in the Wild”, October 20 2004, Groningen
e BNAIC 2004, October 21-22, 2004, Groningen
e SIKS/ICS Masterclass “Logic and Agents:It is all in the game”, November 24, 2004 Utrecht

® SIKS Masterclass by Kalle Lyytinnen; “Innovation in Software Development and Architec-
ture” , November 29, 2004 Enschede

e SIKS-IKAT Research colloquium: organized 6 times in Maastricht
¢ CABS-SIKS Research colloquium, organized 7 times in Delft en Utrecht

e IKS-SIKS Information science seminar, organized 9 times in Utrecht

Doctoral dissertations in 2004

In 2004 20 researchers successfully defended their Ph.D.-thesis and published their work in the
SIKS-dissertation Series.

Virginia Dignum (UU)

A Model for Organizational Interaction: Based on Agents, Founded in Logic
Promotor: prof.dr. J.-J. Ch. Meyer (Uu)

Co-promotor: dr. F. Dignum (UU), dr. H.Weigand (UvT)

Promotie: 12 January 2004

Bart-Jan Hommes (TUD)

The Evaluation of Business Process Modeling Techniques
Promotor: prof.dr.ir. J.L.G. Dietz (TUD)

Promotie: 26 January 2004

Lai Xu (UvT)

Monitoring Multi-party Contracts for E-business
Promotor:Prof.dr.ir. M.P. Papazoglou (UvT)
Co-promotor: dr.rer.nat. M.A. Jeusfeld (UvT)
Promotie: 20 February 2004
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Perry Groot (VU)

A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving
Promotor: prof. dr. F.A.H. van Harmelen (VU)

Co-promotor: dr. A.C.M. ten Teije (VU)

Promotie: 23 March 2004

Viara Popova (EUR)

Knowledge discovery and monotonicity
Promotor: prof.dr. A. de Bruin (EUR)
Co-promotor: dr. J.C. Bioch (EUR)
Promotie: 01 April 2004

Chris van Aart (UVA)

Organizational Principles for Multi-Agent Architectures

Promotores: prof.dr. B.J. Wielinga (UvA), prof.dr.A.Th.Schreiber (VU)
Promotie: 06 April 2004

Elise Boltjes (UM)

Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar abstract denken, vooral voor
meisjes

Promotores: Prof. dr. M.J.H. Meijer (UM), Prof. dr. H.J. van den Herik (UM)

Promotie: 13 May 2004

Martin Caminada (VU)

For the Sake of the Argument; explorations into argument-based reasoning
Promotor: Prof. dr. R.P. van de Riet (VU)

Co-promotor: dr. mr. H. Prakken (UU)

Promotie: 22 June 2004

The Duy Bui (UT)

Creating emotions and facial expressions for embodied agents
Promotor: Prof. dr. ir. A. Nijholt (UT)

Co-promotor: dr. D.K.J. Heylen (UT)

Promotie: 1 July 2004

Wojciech Jamroga (UT)

Using Multiple Models of Reality: On Agents who Know how to Play

Promotores: Prof. dr. ir. A. Nijholt (UT), Prof.dr. W. van der Hoek (University of Liverpool)
Co-promotor: dr. J. Zwiers (UT)

Promotie: 1 July 2004

Paul Harrenstein (UU)

Logic in Conflict. Logical Explorations in Strategic Equilibrium

Promotores: Prof. dr. J.-J. Ch. Meyer (UU), Prof.dr. W. van der Hoek (University of Liverpool)
Co-promotor: dr. C. Witteveen (TUD)

Promotie: 6 September 2004

Michel Klein (VU)

Change Management for Distributed Ontologies

Promotores: prof dr. A.Th. Schreiber (VU), prof dr. J.M. Akkermans (VU)
Promotie: 14 September 2004
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Joop Verbeek (UM)

Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale politile gegevensuitwisseling
en digitale expertise

Promotores: Prof. dr. H.J. van den Herik (UM), Prof.mr. Th.A. de Roos (UL)

Promotie: 14 Oktober 2004

Suzanne Kabel (UVA)

Knowledge-rich indexing of learning-ob jects

Promotores: Prof. dr. R. de Hoog (UVA) Prof. dr. B.J Wielinga (UVA)
Promotie: 20 October 2004

Federico Divina (VU)

Hybrid Genetic Relational Search for Inductive Learning
Promotor: Prof. dr. A.E. Eiben (VU)

Co-promotor: dr. E. Marchiori (VU)

Promotie: 26 October 2004

Arno Knobbe (UU)

Multi-Relational Data Mining

Promotor: Prof. dr. A.P.J.M. Siebes (UU)
Promotie: 22 November 2004

Thijs Westerveld (UT)

Using generative probabilistic models for multimedia retrieval
Promotor: Prof. dr. F.M.G. de Jong (UT)

Co-promotor: Dr. A.P. de Vries (CWI)

Promotie: 25 November 2004

Vania Bessa Machado (UvA)

Supporting the Construction of Qualitative Knowledge Models
Promotor: Prof. Dr. B.J. Wielinga (UvA)

Co-promotor: Dr. B. Bredeweg (UvA)

Promotie: 29 November 2004

Mark Winands (UM)

Informed Search in Complex Games
Promotor: prof.dr. H.J. van den Herik (UM)
Co-promotor: dr. J.W.H.M. Uiterwijk (UM)
Promotie: 1 December 2004

Madelon Evers (Nyenrode)

Learning from Design: facilitating multidisciplinary design teams
Promotores: Prof dr W. Baets (Nyenrode), Prof. dr. G. van der Veer (VU)
Co-promotor: dr. Th. Homan (Nyenrode)

Promotie: 10 December 2004
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The Theory of Tetris

Hendrik Jan Hoogeboom and Walter A. Kosters

Leiden Institute of Advanced Computer Science
Universiteit Leiden, The Netherlands
{hoogeboo ,kosters}@liacs.nl

1 Introduction

Any algorithm requires a theoretical analysis. Such an analysis may address issues like complex-
ity (e.g., NP-completeness [9]), decidability and practical properties concerning special cases.
In this paper we would like to discuss the TETRIS game in this light. We will first describe the
game and some of its variants, show NP-completeness of a certain decision problem naturally
attached to the game and then prove (un)decidability in some other cases. We conclude with
some practical topics that arise from the NP-completeness proof.

This paper is based on a series of articles that begins with the original NP-completeness
proof of Demaine, Hohenberger and Liben-Nowell from MIT [7], that was well-noticed in the
popular press. The proof was simplified in [3], leading to a joint journal paper [2]. In [13] and
[14] the other issues mentioned above were dealt with. For full proofs we refer to these papers.

TETRIS is a one-person game where random pieces consisting of four blocks fall down, one
at a time, in an originally empty rectangular game board. The player is allowed to rotate and
horizontally move the falling piece. If an entire row of the board is filled with blocks, it is
removed (“cleared”). The main purpose of the game is to keep on playing as long as possible.

The decision problem under consideration is essentially the following. Given a partially
filled game board (referred to as a TETRIS configuration), and an ordered finite known series of
pieces, is it possible to play in such a way that the whole board is cleared? The NP-completeness
proof is by reduction. It is shown that instances of the so-called 3-PARTITION problem can be
translated into rather involved TETRIS configurations, where solutions correspond with boards
that can be cleared. The configurations used suggest the question of constructibility: which
configurations can be reached during game play? The rather surprising answer appears to be
that almost any configuration can be reached, given suitable pieces. Another issue has to do
with decidability: if the user interaction is somewhat bounded, is it then decidable whether
certain natural sets of piece sequences contain “clearing” sequences? All these topics will be
addressed in the sequel.

2 Rules

The game of TrTRIS is played on a rectangular board consisting of square (initially empty)
cells. The board is of fixed width w > 4 and, for our purposes, of unbounded height. Seven
game pieces can be used, each covering four board cells — from now on usually called blocks;
they are depicted below. These pieces are known as (from left to right) 0 or square, J or leftgun,
L or rightgun, I or dash, Z or leftsnake, S or rightsnake, and T or tee:

The “computer” generates a (usually random) sequence of pieces that drop down from the
top of the board until they rest on top of (parts of) previously dropped pieces or on the bottom
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of the game board. The user /player can determine the position and orientation of the pieces
by rotating and moving them horizontally while they fall. Whenever all the cells of a row (also
called line) of the game board are occupied, the line is cleared; all blocks above it are lowered
by one row (and no more). This row clearing can happen for several lines simultaneously.

In TETRIS the purpose usually is to clear as many rows as possible given the generated
sequence of pieces, while avoiding to run out of space vertically. As the game of TETRIS itself
is finite state (and hence decidable) when played on a board of given width and height, here we
assume the board is of unbounded height.

TrTRIS has some peculiar implementation details. Let us mention a few examples.

1. In the NP-completeness proof below it is essential that TETRIS pieces that touch the
bottom of the game board or blocks from other pieces can still slide horizontally before
they are “fixed”. In some implementations this is however not possible, and pieces are
then fixed immediately after touchdown. The NP-completeness proof might still hold for
this other version, but a new construction is necessary, since the current one relies on
filling overhangs with horizontally sliding squares.

2. In [7, 2] some attention is given to rotation models. It is indeed a problem, or rather
a convention, to describe which “holes” allow TETRIS pieces to pass through, perhaps
involving meticulous intermediate rotations. And when are pieces still allowed to rotate?
In the sequel we do not refer to this issue anymore, since the constructions involved do
not give rise to problems of this kind.

3. Some people are surprised by seeing floating blocks in TETRIS configurations. As will be
shown later, (nearly) every configuration is constructible, i.e., can occur during regular
game play. This includes situations where blocks do not rest on other blocks, but just
remain floating — on air, so to speak. This is a consequence of the strictly applied rule
that as one or more lines are cleared, they are removed from the game board; blocks above
these disappearing lines precisely fall down as many lines as were cleared. This issue will
only be of importance in the section on the construction of configurations.

3 NP-completeness

As mentioned in the introduction, we shall analyze the complexity of some decision problems
related to TETRIS. We shall also loosely describe the proof of the main NP-completeness result.
Precise definitions, theorems, proofs and related results can be found in [7, 3, 2].

In this section we consider the following decision problem, called TETRIS CLEARING:

Instance. A TETRIS game board partially filled with blocks, and an ordered sequence of
TETRIS pieces.
Question. Is it possible to play in such a way that the game board is left empty in the end?

It is not difficult to see that this problem is in the class NP. We now prove NP-hardness. As
mentioned before, the proof is by reduction. We use the 3-PARTITION problem:

Instance. An sequence a1, 0z, ...,a3s of positive integers and a positive integer T, so that
T/4 <a; <T/2 for all i with 1 < 4 < 3s and so that S ai=sT.

Question. Can {1,2,... , 38} be partitioned into s disjoint subsets A;, A,,. .., A, so that for
all j with 1 < 5 <5, we have ZieAj =177

In [9] it is shown that this problem is NP-complete in the strong sense, which means that it is
NP-hard even if the inputs a; and 7" are provided in unary.
Now the main result is:

Theorem. TETRIS CLEARING is NP-complete.

We give a brief sketch of the proof. We start from an instance of the 3-PARTITION problem. We
then construct the following initial TETRIS game board (see picture below, left). The height of
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the top row is 51"+ 18. We call the empty columns buckets and the big rectangular space on
the right fill area; the T-shaped area above right is called the lock. Every bucket represents a
subset as in 3-PARTITION. There are s buckets just like there are s subsets in 3-PARTITION.

The sequence of pieces for our game consists of a series of pieces for each a;, followed by
a number of pieces after all the a;’s. Each integer a; is “coded” by one L, a; times the triple
0-J-0, and one pair 0-I (see right part of the figure above for a; = 3). The final pieces are:
s successive L’s to fill the buckets, one T to open the lock and exactly enough (i.e., 5T + 16)
successive I’s to cover the fill area.

It is not much of a problem to show that the given sequence of pieces can clear the initial
game board, in the case of a “yes” instance of 3-PARTITION. It is harder to prove that if the
sequence cannot clear the board, the original instance could not fulfill the properties of a “no”
instance. We just mention a few interesting details.

We suppose that we are looking at a sequence that can clear the original TETRIS game
board. The volume of the pieces is precisely what is needed to fill the empty cells in this board.
This implies — among other things — that no pieces are allowed to stick out above the original
highest row. The fill area and the lock ensure that there will be no line clearings before all the
buckets to the left are filled. Then comes the unique T piece that opens the lock in the upper
right, after which a series of I's does the clearing. The main body of this part of the proof is
devoted to showing that the series of pieces that “code” a number are precisely in this order
required to fill the bucket, and cannot be spread over several buckets. Also notice the use of
sliding 0’s to fill the buckets. O

4 Decidability

In this section we discuss (un)decidability issues related to the game of TETRIS, as reported in
[13] (where details of the proofs can be found).

We consider different models of user intervention. On the one hand we have the normal
TETRIS rules, as described above, where the user has many possibilities to influence the result.
At the other extreme we have the model where the user is not allowed any intervention: once
the “computer” fixes the piece, its orientation and its horizontal position, the piece drops down
in the specified orientation, and in the specified position.
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As for a given game board the number of initial possibilities of each piece — its orientation
and the columns occupied — is bounded, the sequence of pieces dropped can be described
by a string over a finite alphabet. This suggests the following decision problem, TETRIS with
Intervention Model M:

Instance. A regular language L describing sequences of TETRIS pieces (with their initial ori-
entation and horizontal position) for a given width game board.

Question. Is there a sequence in L that leaves the game board empty after dropping all the
pieces into an initially empty game board, according to the “model” A7 Le., does the
user have a way to clear the entire sequence, while adhering to the rules in Af?

Note that if the user is not allowed any intervention (we call this the Null Intervention Model,
and refer to the corresponding decision problem as TETRIS without intervention), there are no
choices to be made. For more complicated models, we are looking for “optimal” user actions
that lead to total clearings.

4.1 An undecidability result
We now have the following undecidability result:

Theorem. TETRIS without intervention, for sequences consisting only of I’s on a board of
width 10, is undecidable.

The proof is based on a reduction from the Post Correspondence Problem [15]. The basic
idea is the following.

Given an instance of the PCP — two
sequences (uy,...,u,) and (V1o s Un)
of strings over a two-letter alphabet
{a,b} — we construct an instance L of
TETRIS without intervention, on a board
of width 10. The left and right halves of
the board (each a board of 5 cells wide)
will act as stacks holding proposed solu-
tions to the PCP, i.e., words of the form
Uiy Uiy -+ Uiy = ViU, ...1v5 for some
k > 1, and 1 < ’i]_,ig,...,ik < n. To
build the contents of the stacks we need
three basic piles of I’s, that we call A B
and X. The first two of these represent the two symbols a and b of the alphabet of the PCP;
the last one is used for padding the two copies of the solutions.

Note that the A and B piles can be removed (popped from the stack) following the rules of
TETRIS, by dropping three vertical I’s in the proper columns, provided the piles are next to
an X pile on the other stack. The piles are designed in such a way that the vertical I’s used to
remove the blocks do not fall through to the next pile. Pieces dropped in the first column are
blocked by the bottom rows of the pile, pieces falling in the fifth column are blocked by the
topmost row of the pile below (or by the “floor”).

Now first, the language L {or the corresponding finite automaton) prepares nondeterminis-
tically a sequence of piles, pushing onto the two stacks the same (nonempty) sequence of A’s
and B’s, but randomly interleaved with X’s. This part is independent of the particular instance
of the PCP.

Then, in a second phase, L tries to clear the board, guessing a solution of the PCP, by
repeatedly picking an index ¢ (1 <%<n)and trying to pop the left stack according to the
string u; and the right stack according to the string v;.

The rest of the proof (see [13]) shows that the original PCP has a solution if and only if the
language L has a way to leave the empty game board.
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As an example, a configuration left after the first phase of
our construction is depicted to the right: in the left stack we can
read (top-to-bottom) a, b, ba while we encounter ab, b, a in the right
stack. This corresponds with a solvable PCP. O

4.2 Some decidability results

Quite amazingly, the undecidability result uses only a single type of
piece. Let us now look at other ones. A simple argument shows that
a nonempty sequence of either S or Z pieces cannot clear the board
(cf. [5]), so the problem restricted to those pieces becomes trivially
decidable. For the pieces T, L and J we can conceive a configuration
that can be used to construct stacks, and similar arguments as for
I hold (albeit on a board of width 16).

Finally, for 0 only very regular patterns are possible that leave
an empty board. This is the basis for the following result:

Theorem. TETRIS without intervention, for sequences consisting
only of 0’s on a board of width 10, is decidable. O

We reconsider the decision result above, now allowing user
translation and rotation of the pieces that are specified by the
sequences in the given regular language L. The intervention is just
as in the standard TETRIS game. We refer to the corresponding
decision problem as TETRIS with normal intervention.

The general question is related to the many tiling problems
for polyominoes (see, e.g., [11, 8]), as a tiling of a rectangle by
TETRIS tetrominoes implies a possible clearing of the board using
the TETRIS pieces in some suitable order. However, apart from the
fact that the TETRIS problem also deals with the order in which the pieces are offered, classical
tiling is more restricted: it does not allow intermediate clearing of rows. As an example, ten T’s
can clear the TETRIS game board (of width 10, as below) whereas there is no tiling of the 10
by 4 rectangle using T’s [16].

The sequences of the rectangular TETRIS pieces 0

and I that can be used to leave an empty game board
have a simple characterization. Our result is valid for
standard width 10, but can be stated slightly more
generally. We need the following Lemma:
Lemma. A sequence of I’s and 0’s can be dropped
into an initially empty game board of width 4k + 2
(k > 1) leaving the empty board if and only if the number of pieces is a multiple of 2k + 1, and
the number of I’s is even. [
We have an immediate corollary:

Theorem. TETRIS with normal intervention, for sequences consisting only of I’s and 0’s on a
board of width 10, is decidable. O

There are connections with the strategies developed for winning two piece TETRIS games pre-
sented in [4].

Let us conclude this section with a slightly unexpected result. Restricted to a single piece
(which can be other than the seven tetrominoes in standard TETRIS) TETRIS with normal
intervention is decidable, even though we do not (need to) explicitly know the decision algorithm
in each particular case:

Theorem. TETRIS with normal intervention, for sequences consisting of copies a single fixed
piece, on a board of fixed width, is decidable.

The proof relies on the fact that only the number of pieces matters, and that these numbers
form a so-called semi-linear set [10]. O
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5 Constructibility

The NP-completeness proof requires a rather intricate TETRIS configuration to start with. It
seemns a natural question to ask whether or not this configuration can occur during normal game
play, and more general: what are the configurations that can occur? The answer is somewhat
surprising: (almost) any configuration can show up!

A TETRIS configuration is a game
board, where some of the cells are al-
ready occupied. A configuration is called - w
constructible if it is possible to reach it,
from an initially empty board, with a u
suitable series of pieces using appropri- *® *
ate translations and rotations. In this sec- o 0 00
tion we shall prove that essentially every ° P
reasonable configuration is constructible.

The one non-trivial exception deals with . @ he
boards of even width, where some simple
parity condition should be fulfilled. The ® 6 00 hd
example configuration to the right, on a
board of width w - 13, is constructible.
Our construction requires 276 TETRIS pieces, clearing (4-276 —25)/13 - 83 intermediate rows.

Let us first remark that if the width w of the board is a multiple of 4, at any time the
number of blocks in the current configuration is a multiple of 4: each new piece adds 4 blocks,
whereas a line clearing removes w blocks. So clearly, the number of blocks in any constructible
configuration should then be a multiple of 4. Similarly, if w + 2 is a multiple of 4, the number
of blocks should be a multiple of 2. These two simple restrictions appear to be the only ones:

Theorem. A configuration of p blocks is constructible using suitable TETRIS pieces starting
from the empty board of width w if and only if

1. no row is completely full, and
2. no row below the highest one containing blocks is completely empty, and

3. if w is a multiple of 4, then so is p; if w+ 2 is a multiple of 4, then p is even.

The next section is dedicated to the proof of the theorem, giving an explicit construction (see [12]
for an implementation in the form of a Java-applet). In the sequel we shall assume that all three
conditions mentioned in the theorem are met.

5.1 The construction

The configuration on the board is constructed row-by-row in a modular fashion. In [14] all
details are given. For each row the construction consists of two phases.
First we build a platform that serves
as a scaffolding for the construction work
(it prevents TETRIS pieces from falling
down to lower rows). In general the plat-
form looks as follows, see the picture to
the right. The * denotes the bottom right state
empty square of the platform; once it is l
filled, its whole row will be cleared. The
platform construction requires 3 or 7 in-
termediate rows that are cleared.
"The number of squares sticking out ver-
tically above the platform at the left end
may vary between 0 and 3, and is referred to as the state of the platform. We need such a state
as the total number of cells presently occupied or cleared in the past must be a multiple of 4.
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In the second phase, the row construc-

tion phase, we build the blocks ® of the T\_
next row of the configuration on top of the L

g
platform, using six additional rows. Ba- L

sically we construct consecutive “rectan-

gles” two columns wide and six rows high

T

with the necessary blocks on top, proceed-
ing from left to right. Again, however, we
have the multiple of 4 restriction, and we r

carry a surplus of blocks as state of the g —l
rectangles. This state is visible as indent *
of up to three blocks at the bottom in the
left column of the rectangle. The last rect-
angle is designed to fill both the final block of the platform and the six rows of the rectangles,
clearing all additional blocks that are not part of the final configuration.

As always, the number of blocks occu-
pied in the construction need not be a mul-
tiple of 4, and we have to take this into
account. We solve this by allowing a group
of up to three additional blocks placed on
top of one of the blocks. This overflow is
indicated by + in the figure to the right.
The overflow is used as a starting point
in the construction of the platform for the
next row of blocks. If there is no overflow
then we start the construction by putting L
a horizontal I on top of one of the blocks l *
of the last row (artificially introducing an
overflow of four). In the case of odd width,
the overflow can be removed each time.

The precise form of the rectangles (for each state, number of blocks and overflow) is rather
tedious, see [14]. Particular care has to be taken for the last rectangle which has to clear the
intermediate rows.

The whole construction starts with a horizontal I. It is extended to a platform with state 1.
In order to remove the last overflow — if any —, the construction ends with some simple final
details.

Note that in many cases there exist simpler constructions (for instance for boards of odd
width), but the uniform approach has its own merits. Indeed, some configurations are even
extremely simple to reach (e.g., a single vertical I), whereas our construction uses an abundance
of pieces, clearing many rows on the way.

6 Conclusion

So far we have discussed several issues that are somehow attached to the game of TETRIS. The
fact that a well-known and easy to understand game as TETRIS possesses such a rich structure
is really surprising. There clearly is a connection between deep mathematical ideas such as
NP-completeness and every day life. This fits in the larger research picture, where for many
games these sorts of problems are addressed, cf. [1, 6].

Many problems remain open. Among others, one can think of variants of the game rules,

but also of more generals topics as the characterization of the clearing sequences in decidable
cases.
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Abstract

We believe that the technique of graph transformation offers a very natural way to
specify semantics for languages that have dynamic allocation and linking structure; for
instance, object-oriented programming languages, but also languages for mobility. In
this note we expose, on a rather informal level, the reasons for this belief. Our hope
in doing this is to raise interest in this technique and so generate more interest in the
fascinating possibilities and open questions of this area.

1 Graph Transformation Is Easy

Transformation means changing (literally: shaping) one thing into another. In the case
of graph transformation, obviously, the things being changed are graphs. A fundamental
assumption in studying such changes is that they are not arbitrary but controlled by some
guiding principles, and that these principles can be captured in rules. A graph transfor-
mation rule (often called a production rule) describes a kind of change that will transform
certain graphs — those to which the rule is applicable — into others, in a specific way
encoded in the rule. A set of production rules is usually called a production system; graphs
that are subjected to transformation are often called host graphs.

For us, the interest in this arises from the fact that graphs can be used to model just
about any discrete structure — with lesser or greater ease — and that many kinds of dy-
namic changes in such structures lend themselves quite naturally to a description by graph
production rules. This is in particular true of the semantics of object-oriented systems: it
1s our firm belief that graph transformations are a very natural technique to specify the se-
mantics of such systems (see also Sect. 4). (It should be mentioned that this is not the only,
and indeed historically not the original, reason to be interested in graph transformation:
another motivation is to characterise graph structures as the end product of a sequence of
transformations guided by a given set of rules. As a very simple example, the class of all
connected graphs can be characterised in this way. In that context it is not so much the
process of change as its result that is of primary interest.)

Although there are many ways to define graph production rules, all rules have certain
basic things in common. They always specify changes in a (relatively) small sub-structure,
and the change always consists of modifications to that sub-structure, such as taking away
parts from it or adding parts to it. For the rule to apply, the first requirement is that the host
graph actually contains a sub-structure of the right kind; in fact, if it contains more than
one such sub-structure, the rule is applicable in different ways.

This is, of course, a very general description; in practice, there have turned out to be
many different useful ways to specify sub-structures and changes. In the past this has led
to strong opinions about the relative merits of the various techniques. Fortunately, the
purpose of this paper is not to categorise these approaches (for that, the handbook [21] is a
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Figure 1: Two graphs with a matching

good source); rather, we want to illustrate the ease with which graph transformation can be
used and understood. For this purpose we will concentrate on one, very simple, formalism,
which we do not claim o be superior in any formal way but which we do believe to be
easily understandable. The approach has been implemented in a tool, called GROOVE,
which can be downloaded at http://groove.sf.net (see also [17]); all examples in
this paper have been produced using the tool.

We will now give some formal definitions. First of all we define the concept of a graph. For
this purpose we assume a known set of labels La bels, which contains names with which we
will label the edges of our graphs.

Definition 1 (graph) A graph over Labels is q tuple (Nodes, Edges, src, tgt, lab), where
Nodes and Edges C Nodes x Labels x Edges are finite sets.

Thus, an edge e € Edges is a triple (v,a,w) consisting of a source node src(e) = v, a label
lab(e) = a, and a target node tgt(e) = w. If src(e) = tgt(e) we call e a self-edge. If
G is a graph then we use G.Nodes and G.Edges to indicate its components. Note that the
definition rules does not allow different edges with the same source nodes, labels and target
nodes. If G.Nodes C H.Nodes and G.Edges C H.Edges, we call G a subgraph of H; we
indicate this by G C H. We now define what it means for one graph (o match another.

Definition 2 (graph matching) Ler G, H be graphs. A matching of G in H is given by a
Junction nodeMap: G.Nodes — H.Nodes, such that

(v,a,w) € G.Edges implies (nodeMap(v),a,nodeMap(w)) € H.Edges .

We write nodeMap: G— H to denote that nodeMap is a matching of G in H. We also extend
nodeMap pointwise to edges; i.e.,

nodeMap(e) = (nodeMap(src(e)), lab(e), nodeMap(tgt(e))) .

Example 3 Fig. | shows mo graphs, with the notational convention that labels shown
on nodes are shorthand for self-edges with those labels. The left hand graph shows a
linked-list structure, consisting of Cell-labelled nodes (or, more accurately, nodes with
Cell-labelled self-edges) linked by next-labelled edges. The right hand side graph shows
another graph over the same label set. Furthermore, the dotted arrows indicate the node
map of a matching of the right hand side graph in the left hand side graph. The edge map is
not depicted but can be constructed uniquely from the node map (again taking into account
that the node labels Cell and 4 on the left hand side actually stand for self-edges).

Definition 4 (production rule) A production rule is a tuple (Lhs, Rhs) of graphs. The rule
is applicable to a graph G if there is a matching of Lhs into G.
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Figure 2: A production rule, and the result of its application to Fig. 1

To define the application of a rule {Lhs, Rhs) precisely, we identify the sets of elements
scheduled to be deleted and those scheduled to be created, as follows:

Del.Nodes — Lhs.Nodes \ Rhs.Nodes
Del.Edges = Lhs.Edges\ Rhs.Edges
New.Nodes = Rhs.Nodes\ Lhs.Nodes

New.Edges = Rhs.Edges )\ Lhs.Edges .

When we apply a rule to G, the elements that are in Lhs but not in Rhs are deleted from G
(or rather, their images under the matching) and elements that are in Rhs but not in Lhs are
added (or rather, fresh images are created for them). However, things are complicated by
two effects:

e The matching may be non-injective; in particular, there may be vy € Del.Nodes and
va € Lhs.Nodes \ Del.Nodes such that nodeMap(v;) = nodeMap(v2);

e The matching may be non-surjective on the incident edges of a node sched-
uled to be deleted; in particular, there may be v € Del.Nodes and e €
G.Edges \ nodeMap(Del.Edges) such that G.src(e) = nodeMap(v) or G.tgt(e) =
nodeMap(v). (Such an edge e is often called a dangling edge.)

These problems are resolved by specifying that deletion always wins out: that is,
nodeMap(v,) and e in the scenarios above will both be deleted from G. This can have
unexpected effects, as the example below will show.

Example 5 Fig. 2 shows a graph production rule, where the left hand side and right hand
side are combined into one graph, with the following notational conventions:

e Del.Nodes and Del.Edges are depicted as thin, dashed (blue) nodes and edges;
e New.Nodes and New.Edges are depicted as wide (green) nodes and edges;

e All other nodes and edges are in the intersection of Lhs and Rhs.

In other words, Lhs consists of the thin (continuous and dashed) nodes and edges and Rhs
consists of the continuous (thin and wide) nodes and edges.

Intuitively, the rule in Fig. 2 specifies that a 4-labelled edge is to be deleted, together
with its target node, and a 5-labelled edge is to be created to a new node. However, the
only matching of Lhs in the left hand graph of Fig. 1 maps both rule nodes to the same
graph node; moreover; this graph node also has an incoming val-edge, about which the
rule says nothing. The result is that the node is deleted, with its incoming val-edge; even
more curiously, the 5-edge that was just created is deleted as well, but the node that was
also just created is preserved. The result is also shown in Fig. 2.

The following algorithm defines how to apply a graph production rule (Lhs, Rhs) to a host
graph G, given a matching nodeMap. The resulting transformed graph is denoted H.

i. Extend nodeMap (o a total function nodeMap, from Lhs.Nodes U Rhs.Nodes by
adding fresh images (not in G.Nodes) for all elements of New.Nodes;

2. Construct a graph K = (nodeMap, (Rhs.Nodes), nodeMap, (Rhs.Edges));
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Figure 3: Rule for deleting the head element of a list, with two applications

3. Construct H such that

H.Nodes = K.Nodes\ nodeMap(Del.Nodes)
H.Edges (K.Edges \ nodeMap(Del.Edges))
N K.src™! (H.Nodes) M K.tgt~*(H.Nodes) .

Il

It should be noted that the complications identified above (conflicts between preservation
and deletion, and dangling edges) may also be resolved in a different manner, namely by
strengthening the conditions under which a rule is considered to be applicable (see Def. 4)
s0 that these cases are automatically excluded. In fact, the solution presented above is
the one followed in the so-called single-pushout approach whereas the double-pushout
approach strengthens the application condition instead — see [6, 12] for a thorough dis-
cussion. The latter has the advantage that the graphs K and H in the construction above
always coincide; in other words, the construction of the transformed graph becomes easier.

Example 6 Fig. 3 shows a more useful rule than the one in Fig. 2: it deletes the first cell
in a list, provided this is not the last one. The figure also shows an application of this
rule to the list graph of Fig. 1. On the left, the image of the matching in the host graph
is emphasised. In this case, since New.Nodes is empty, the extended mapping nodeMap,
used in the construction above equals nodeMap; consequently, the K in the construction
equals the host graph with one additional head-edge. To obtain the target graph, the first
Cell-node with its incident edges (including the dangling val-edge, which is not explicitly
mentioned in the rule) is removed from K. In the resulting graph, the same rule is applicable
once more, resulting in the second transformation in the figure. In the final graph, now, the
rule is no longer applicable since no matching from the left hand side exists: the first cell
in the list no longer has a successor. Below (Ex. 10) we will show how to define a second
rule that takes care of removing the last remaining cell, while making sure that this is only
applicable when appropriate.

2 Graph Transformation Is Logical

The existence of a matching of a graph G in another graph H can be interpreted as a condi-
tion on H, namely that the structure described by G can be found somewhere in it. This is
for instance used in the applicability condition we have defined in Def. 4: in order to apply
a rule, a matching from its left hand side in the host graph must exist. Unfortunately, the
kind of properties we can express in this way is limited: essentially, they can only state the
existence of nodes and edges.
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Example 7 Here are some examples of useful properties that are not existential, in the
sense above:

e Negative conditions: for instance, the property that a given Cell-node does not have
an outgoing next-edge. This would be useful to define a rule, complementary to the
one in Fig. 3, that deletes the only remaining Cell-node from a list.

o Invariants: for instance, the property that all Cell-nodes have an outgoing val-edge.
This is a typical property that one would want to verify on a given system.

A much more powerful way of specifying graph properties, still based on the same principle
of graph matching, is obtained by resting the graphs to be matched inside each other and
alternating existential and universal quantors for each level of nesting. Two examples,
expressing precisely the properties of Ex. 7, are shown in Fig. 4 below.!

Symbolically, such nested structures can be understood as existential or universal for-
mulae, exist or univ, respectively, in the following grammar (I and J are finite sets and P,
Q; fors € I and R; for j € J are “property graphs™):

exist(P) = Vier 3Q: univi(Q;) (P C Q)
univ(P) n= /\jGJ VRJ existj(Rj) (P - R]) .

This grammar should be read as follows. Each formula form (either exist or univ) is pa-
rameterised with a property graph P, which corresponds to the structure that has already
been matched in some outer formula (i.e., within which form is a sub-formula). Each next
level quantifies over a super-graph of P, meaning that it requires the existence of addi-
tional structure in the host graph (in the case of exist) or states a universal property over
all instances of such additional structure (in the case of univ). The semantics is defined by
the following rules, where m: P — G stands for the matching already established for the
parameter graph P in the host graph G:

m |= exist(P) :& thereare ¢ € I,n: Q; — G such thatm C nand n |= univ;(Q;)
m = univ(P) & forall j € J,n:R; = G, if m C nthen n = exist;(R;) .

(The notation m C n, where m:P — G and n: Q — G with P C Q, means that we can
create n from m by adding images (in G) for the nodes in Q.Nodes\ P.Nodes.) It should be
remarked that the sets I and J may be empty: \/ @ is logically equivalent to ff and A @ to
tt. As a consequence, a sub-formula VR; exist; (R;) where exist; = \/ ) actually expresses
the non-existence of the structure R; in the host graph. An example of this is found in the
left hand side condition of Fig. 4: the inner, V-quantified structure is in fact forbidden.

The rules above define under what circumstances a formula is satisfied by a matching.
In the end, however, we want to use such formulae to specify properties of graphs. For
this purpose, we use the one-to-one correspondence between graphs and matchings of the
empty property graph, here denoted @, into it: that is, we equate a host graph G with (the

UThis representation as nested graphs is essentially that of existential graphs as studied in, e.g., [20, 26, 7]. We
have worked out an alternative, more elegant but much more complicated, representation as tree-shaped diagrams
in the category of graphs in [18].
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Figure 5: Nested graph property with an existential disjunction

unique) matching m: #—G. To be precise, we define, for arbitrary formulae form(() (either

exist(() or univ(f)):

GlEform :& m:0— Gk form .

Example 8 Another, more involved example of a nested graph property is given in Fig. 5.
This expresses that every cell either has a predecessor or is the head element of a list,
in which case, moreover, the list does not have an empty-self-edge. The graph of Fig. |
satisfies this property: it allows three matchings of the outermost ( universally quantified)
graph, one of which can be extended to o matching of the bottom (existentially quantified)
inner graph, where, moreover, the innermost {universally quantified) graph, consisting of
the empty-edge, is absent; the other two outermost matchings can be extended to matchings
of the top (existentially quantified) inner graph.

Clearly, with these nested graphs we can express much stronger properties than with single
matchings. The following is a consequence of the work on existential graphs, and also
follows from [18]:

Theorem 9 Nested graphs, interpreted as graph properties in the way defined above, are
as expressive as first order logic with binary relations (but without equality).

The restriction to logic without equality is actually quite unfortunate, since it prevents
us from doing any kind of counting. There are many useful properties that involve, for
instance, the uniqueness of nodes with a certain property; for instance, the fact that (in our
list example) Cell-nodes are unshared, i.e., have at most one predecessor. It follows from
Th. 9 that this and similar properties cannot be expressed with the nested graphs presented
above. There are several possible ways to lift this restriction.

e Limit the matchings allowed in Def. 4 to injective ones only. This is a definition
often seen in the graph transformation literature: although it may cost a (in the worst
case super-exponential) blowup in the number of rules required to model a particular
behaviour, in many practical examples it seems quite reasonable.

e Exiend the subgraph relation between P and the Q; and R; in the grammar of exist
and univ to (non-injective) matchings m;: P—Q; resp. n;: P—R;. This is the solution
presented in [18], at the cost of additional technical complexity. A consequence is
that the resulting structure cannot be depicted as a nested graph any more.

¢ Introduce special edges in the property graphs that stand for the equality of nodes.
We present this solution below.

Negative application conditions. The idea of using some form of nesting to enhance
the control over rule applications is far from new: it was described first in [14] for a single
level of nesting (resulting in so-called negative application conditions) and extended in [15]
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to a second level of nesting (so-calied conditional application conditions). The idea is to
regard the LHS Lhs of a rule (Lhs, Rhs) as the starting point of a formula ILhs univ(Lhs).
Any matching that is discovered to satisfy the sub-formula univ(Lhs) gives rise to a rule
application.

Example 10 Fig. 6 shows a production rule for deleting the head element of a list in case
this is also the final element, i.e., if it has no outgoing next-edge. This involves a negative
application condition, here depicted as a nested universal sub-graph (without further sub-
conditions, so that the universal property works as a negative condition). As a consequence,
this rule is not applicable in the list graph of Fig. 1, but it is applicable to the final (bottom
right hand) graph of Fig. 3.

In addition to the explicit bounding box for the negative condition, in Fig. 6 we have
also distinguished the relevant subgraph by using very wide, closely dashed (red) lines.
In future examples of rules with negative application conditions we will actually leave
out the bounding boxes: each connected sub-graph drawn in these wide, closely dashed
lines implicitly stands for a universal sub-formula without further sub-formulae, which is
therefore works as a negative condition.

Equality and regular expressions. So far we have used ordinary graph morphisms as
matchings. We now strengthen the type of properties we can express by using a differ-
ent class of labels in P, which should not be matched by single edges of G but rather by

(possibly empty) paths through G. We will use H.Paths to denote the set of such paths.
Formally:

H.Paths = {vi-a;-vo - - a,_1-vn, € H.Nodes:(Labels-H.Nodes)* |
V1 <i<n:(via;,vip1) € H.Edges} .

If p € G.Paths for some graph G, we use lab(p) to stand for the sequence of labels in p,
src(p) for the first node and tgt(p) for the last node in p; hence, if p = vi-a1-va - - an_1'Vn
then src(p) = v1. lab(p) = a; - - - ap—1 and tgt(p) = Vn.

Definition 11 (path expression language) A path expression language over Labels is a
pair (Exprs, sat), where Exprs is a set of path expressions with Labels C Exprs, and satC
Labels* x Exprs a satisfaction relation berween sequences of labels in Labels and path
expressions, such that for all a € Labels:

ssata <= s=a .

If (s,x) €sat for some label sequence s € Labels® and path expression x € Exprs we say
that s satisfies x; we usually denote this in infix notation, as s sat x. The definition specifies
that a path expression that is actually an element of Labels (recall that Labels C Exprs) is
satisfied only by itself. A prime example of a path expression language is that of regular
expressions, RegExprs, generated by the following grammar:

x = = |a]|xx]|x-x]x*.
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(where — stands for the empty sequence.) Satisfaction is defined as usual:

ssat= & s=¢
ssata & s=a
ssatxi|xz & s satx; ors, sat x
$Satx; -Xg 4> dsy,sy € Labels™ :s s - s,5; sat xg, s, sat x,
ssatx* & 351,...,sn€Labels*:s;sl---sn,V1§i§n:s,-satx.

For instance, both £ sat next*, next sat next* and next-next sat @—*, and both 1 sat 1213
and 2 sat 1|2|3. We generalise the notion of matching to graphs over path expressions as
follows:

Definition 12 (path matching) Given a path expression language (Exprs,sat) over
Labels, a path matching of a graph P over Exprs (i.e., where the labels in P gre actually
path expressions) into a graph G over Labels is a Junction nodeMap: P.Nodes — G.Nodes
such that for all (v,x,w) € P.Edges:

Jp € G.Paths : sre(p) = nodeMap(v), lab(p) sat x, tgt(p) = nodeMap(w) .

Example 13 Fig. 7 shows two nested graph properties. The property on the left hand side
is an invariant, expressing that every Cell-node has a unique predecessor. Note that the
=-labelled edge specifies that its source and target node are matched by the same node of
the host graph, i.e., that the matching is non-injective on these nodes.

The right hand side is an existential property, expressing that from a List-node there is
a Cell-node without successor, and moreover, that no reachable cell node has a val-edge to
a node with self-edge 1, 2 or 3. For instance, in the initial (top left hand) graph of Fig. 3,
this property is not fulfilled because the 2-labelled node still connected to the list; but once
we have deleted the first Cell-node (bottom left) the property holds, as indicated by the
emphasised part of the graph in Fig. 7.

It should be clear from this example that path expressions enhance the expressive power of
nested graph properties. On the one hand we can now state properties about node equality,
using =-labelled edges; hence we have gained (among other things) the ability to count
nodes. On the other hand, the Kieene star enables us to specify paths of arbitrary length,
which implies that we can state properties about transitive closure and connectivity; this
takes us outside standard first-order logic. Thus, we have the following resull (compare
Th. 9):

Theorem 14 Nested graphs with path expressions, interpreted as graph properties in the
way defined above, are properly more expressive than first order logic with binary relations
and equality.

In order to use this expressive power in graph transformations, we extend the definition of
a rule (Def. 4) so that Lhs and Rhs are graphs over Exprs rather than Labels. However,
this only makes sense for that part of the rule that controls the applicability: it is not clear
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Figure 8: Production rule with path expressions and an application

what it would mean if Del.Edg or New.Edges are Exprs-labelled. Instead, for the edges
scheduled to be added or deleted we want to use

Definition 15 (production rule with path expressions) A production rule with path ex-
pressions is a tuple (Lhs,Rhs) of graphs over Exprs, where lab(e) € Labels for all
e € Del.Edges U New.Edges. The rule is applicable to a graph G if there is a path matching
of Lhs into G.

The application of a production rule with path expressions is the same as for ordinary
production rules, thanks to the fact that the deleted and created nodes and edges take their
labels from Labels.

Example 16 Fig. 8 shows a production rule, essentially consisting of the nested graph
property of Fig. 7 as its left hand side. The right hand side specifies that the unconnected
node identified in the LHS should be appended to the list.

3 Graph Transformation Is Difficult

We have advertised graph transformation as a technique that is easy to grasp, powerful and
(in certain application domains) natural. Why, then, is this technique not part of the tool kit
of more formal methods researchers?

We believe that part of the answer to this question is: because the area of graph trans-
formation is perceived to be difficult, and to be centred on questions of a very theoretical
nature. And there is certainly some justification for this feeling. A sizeable fragment of the
literature on graph transformation treats the subject on a very abstract level, in a categorical
setting; for those not familiar or even averse to category theory, this can be a great barrier
to apprecialing the joys of graph transformation. In this perspective, it is almost certainly
a mistake in public relations to use terms like “Single Pushout Approach” to refer to an
intuitively straightforward technique: it suggests that, in order to apply the technique, one
has to know what a pushout is, whereas we believe that this is completely irrelevant in most
cases.

This is not to deny that category theory is a marvellous way to abstract away from
differences in the particular kinds of graphs that one is transforming (typed or untyped,
with binary or hyperedges, flat or hierarchical, with or without attributes, to name some
choices), and there is much to be gained from lifting some of the general issues involved in
any kind of transformation (or rewriting) to this abstract level. For those interested in such
theoretical issues we briefly discuss some of them.

Independence of transformations (see, e.g., [6, 11]). This refers to the question if two
transformations have overlapping or conflicting effects — for instance, because one
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transformation removes a node or edge that the other requires in order to be applica-
ble. If such conflicts do not occur, the transformations are called independent. This
may have important consequences: For instance, in the context of system verifica-
tion, it may be unnecessary to compute all transformations even in a full state space
exploration. In op. cir. this problem is studied on the level of properties of the cat-
egories involved, so that it does not have to be done again for all different types of
graphs.

Constraints and conditions on graphs and graph transformations (sse, e.g., [14, 15, 9,
24]). In Sect. 2 we have shown a fairly straightforward way to formulate properties of
our graphs, but again, one would prefer not to re-invent the wheel for each particular
type of graph. There are two places where properties of graphs play a special role in
the framework of graph transformation: as invariants that one would like to hold on
all graphs, or as application conditions that control the applicability of rules. In op.
cit. these types of properties and their interrelation are studied.

Compositionality of graph production systems (see, e.g.. [13]). In process algebra termi-
nology, graph transformations define a reduction semantics: each state “reduces” to
the next without interference from the environment — in other words, graph trans-
formations define a “closed world semantics” in which all components of the system
being modelled have to be included in the model. In op. cit. it is studied how the
transformation framework can be enriched with contextual information, so that the
behaviour of a complete system can instead be modelled on the level of individual
components, which can be put together afterwards.

4 Graph Transformation Wants You!

Although the field of graph transformation stems from the beginning of the 70s and so is, to
computer science standards, downright venerable, its application to behavioural modelling
and in particular behavioural verification is relatively young. In this contribution we hope
to have given you a taste of how it works and an impression of how it could be applied in
that area, but there are many open issues. We list a few of them here, with some references:
we believe all of these areas to be worthy of further investigation.

Specification. In Sect. 1 we have called graph transformations a natural technique for the
specification of semantics for dynamic changes, on particular in object-oriented Sys-
tems. One paper in which this has been worked out in concrete detail for a relatively
large fragment of Java is [5]; another approach is taken in [8], who (essentially)
define a special object-based language with a graph transformation semantics. How-
ever, we are yet far removed from a discipline in which the definition of such a
semantics can be easily and systematically written down — essentially an EBNF
standard for behavioural semantics.

Verification. Starting with a graph production system, one can generate the corresponding
transition system, essentially by computing all rule applications recursively. This
opens up the way for extending existing methods for test generation or model check-
ing (o graph transformation-based systems. Some studies can be found in [8, 19, 25];
there are, however, major open problems in dealing with the dynamic nature of the
states (which cannot be captured by a fixed state vector). Another interesting option
s to extend assertional reasoning to graph production rules: the theory of graph prop-
erties mentioned in Sect. 3 lays down at least the terminology in which this problem
may be addressed, but the connection to predicate transformation yet has to be tack-
led. Yet another option is to regard a graph production system as an extended Petri
net and transfer techniques from that area, as seen, e.g..in (1, 2].
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Abstraction. In the context of the verification issue, we would especially like to address
abstraction, as an approximative technique. We believe that graphs offer a very clean
setling to study state abstractions; this brings us in the realm of static shape analysis
4 la Sagiv et al. [22, 23] and abstract interpretation. A first proposal was described
in [16]. Abstraction of a different kind, using principles from Petri net unfoldings,
have also been proposed in [3, 4].

Compositionality. In Sect. 3 we have briefly referred to the general theory for composi-
tionality that has recently been developed. However, this work takes the reduction
semantics as a starting point and derives contextual rules from that. We believe that,
instead, it can be quite natural to start off with transformation rules that explicitly
take context into account, and whose effect may include the sending and receiving
of (sub)graphs. For instance, in the context of the running example on lists (e.g.,
Ex. 16), one may imagine a rule that appends an object “received” from some other
component of the system; the identity of the object may be communicated through
some parameterisation mechanism in the style of Structural Operational Semantics.
As far as we are aware, this combination of ideas from graph transformation and
process algebra has not been considered at all so far.

As a consequence of the predominance of category theory in much of the graph literature
research, it is also obligatory to place this paper within the categorical framework. What we
have defined, on a set-theoretic level, is an instance of the single-pushout approach, which
cannot be formulated easily in the double pushout approach — the reason essentially being
the fact that we do not allow so-called parallel edges, or in other words, that our edges
do not have an identity of their own. From the point of view of the algebraic framework,
this is a real drawback: much of the theory referred to above applies only in the double
pushout approach. The reason why we have nevertheless set up our definitions as we did
is twofold: it makes for an easier technical presentation, but more importantly, we like to
equate edges to binary relations. In that light it does not make sense for edges to have an
identity themselves.
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Abstract

We present an atomic decomposition of substitution into
erasure, duplication and (for bound variables) scoping.

1. Introduction

Substitution pervades logic. Implementing logic one im-
mediately realises that substitution is not an atomic oper-
ation. Thus one is faced with the question how to imple-
ment substitution. In the seminal work by De Bruijn on
Automath this question was answered by introducing what
is now known as an explicit substitution calculus on terms.
Here, working on graphs instead of on terms, we present
explicit substitution for graphs. In particular, we show how
substitution can be made explicit by means of three atomic
operators for erasure, duplication, and scoping. Here we
aim to present the basic ideas in an intuitive way. We illus-
trate the issues for rewriting systems, although similar ideas
can be found in many other sub-fields of logic.

2. Linear substitution

A term rewriting system (TRS) is given by an alphabet
together with a set of rewrite rules over the alphabet [9].
As an example consider the TRS A for addition of (unary)
natural numbers having rules:

z+0 — =
z+Sy) — Sz+y)

Using these rules we may find the reduction R given by
S(S(0) + 5(0)) =4 S(S(5(0) +0))) —.a S(S(5(0)))

For instance, the first step is obtained by observing that the
underlined sub-term of S(S5(0) 4+ $(0)) is a substitution in-
stance of the left-hand side  + S(y) of the second rule

(substitute S(0) for = and 0 for y). The step is obtained
by replacing this sub-term by taking the same substitution
instance for the right-hand side of the same rule, yielding
S(S(S(0) + 0)), where the replaced sub-term is over-lined.

The reason for being so detailed about this here, is that
we want to stress that rewriting is a three-phase process
consisting of matching (decomposing a term into a context
and a left-hand side), replacement (replacing the left-hand
side by the corresponding right-hand side), and substitution
(composing the context and the right-hand side into a term).
Whereas usually emphasis is put on the second phase, here
we will be interested in the third phase, substitution.

In the case of addition, the substitution phase is always
simple since each rule of A is linear. That is, every variable
occurs exactly once in both its sides (or not at all). For
this reason, substitution can be thought of mathematically
as a permutation. Implementing terms by graphs, and term
rewrite rules by graph rewrite rules, so-called term graph
rewriting [8]. permutation boils down to rewiring which can
be performed in constant time. In Figure 1 the graph rewrite

o A

Figure 1. Graph rewrite rules for A

system (GRS) corresponding to the TRS A is presented and
Figure 2 displays the graph reduction corresponding to the
reduction R. Note that also a graph rewrite step can be
decomposed into the three phases mentioned above. Typical
other examples of linear term rewrite rules are the rules for
commutativity and associativity:

r+y — Y+
(z+y)+z — z+(y+2)

Unfortunately, not all term rewrite rules are linear.



Figure 2. Graph reduction for =

3. Non-linear substitution

Consider the extension M of the TRS A for addition, by
the rules for multiplication:

zx0 — 0
xSy — z+(zxxy)

with typical reduction § given by
(0) x S(0) = S(0) + (S(0) x 0) =pq S(0) +0

Note that neither of the rules for multiplication is linear. The
first is erasing: the variable z appears in its left-hand side,
but not in its right-hand side. The second is duplicating:
the variable x appears once in its left-hand side, but twice
in its right-hand side. 10 represent replication we introduce
the eraser node ® and the duplicator node V in the graph
representation of these rules in Figure 3. The formal rewrite

e

Figure 3. Graph rewrite rules for M

rules for these replicator nodes will be presented in the next
section, but the idea should be clear already from looking
at the implementation of the reduction S in Figure 4: the
argument connected to such a node is node-wise replicated
the appropriate (0 or 2) number of times. The important
point is that the substitution phase of reduction has become
non-trivial; replication takes time linear in the size of the
replicated argument. Indeed, substitution steps, indicated
by the subscript z, form the majority of the steps in Figure 4.
The idea is then to delay such steps.
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Figure 4. Graph reduction for S

4. Explicit substitution rules

The graph rewrite rules for the eraser and duplicator are
both instances of the two rule schemata in Figure 5. In a

m n n
commule annihilate

Figure 5. Schemata for explicit substitution

slogan: distinct symbols commute; identical symbols anni-
hilate. All our rules for substitution operators will be in-
stances of only these two simple schemata. In fact, for the
moment just commutation suffices. In Figure 6 commuta-
tion is spelled out between on the one hand the replicators
© and V and on the other hand the function symbols 0 and
S. Note that the right-hand side of the commutation rule for

95508

Figure 6. Commutation of VvV, ® with §,0

© and 0 in Figure 6 is the empty graph, as in this case both
n and m in the commutation rule of Figure 5 are zero.

S. Delaying explicit substitution

In the naive graph rewriting implementation of M as in
Figure 4, an M-step is followed by a number of substitution
steps until none is possible anymore, after which the next
M-step takes place, etc.. Having an explicit representation
of substitution gives one the freedom to break this pattern.
For instance, it is intuitively clear that duplicating a sub-
term for which it takes an expensive computation to yield a



simple result is wasteful; computing the result first and then
duplicating it saves half the time.

For terms, the delay of substitution is usually brought
about by extending terms with the let-construct. For in-
stance, applying arule ¢ X 2 5> =z + x to E x 2, yields
letx = Einz + x instead of E + E, which is a good thing
when F is expensive to compute. Hence, the let-construct
can be viewed as an explicit substitution operator for terms.

For graphs, it suffices to break the pattern of reducing to
substitution normal form after each rewrite step. Whereas
up till now ordinary rewrite rules were only applied to
graphs which were in fact trees, breaking the pattern leads
to their application to graphs which are not trees.

Remark 1. In a maximal sharing discipline, as imple-
mented in the ATerm library (3], all identical sub-terms
are shared. That is, duplication is not just delayed but per-
formed in the reverse direction to obtain maximal sharing.

6. Implementation

Stopping short of reaching the substitution normal form
gives rise to the following adequacy questions, cf. [8]:

e Can one characterise the graphs representing terms?
e How do graph and term rewriting relate?

To give somewhat precise answers to these questions, it is
useful to introduce a bit of notation. Let &(t) denote the
directed graph (in fact, tree) corresponding to the term ¢,
obtained by directing all edges downward. Letting T(G)
denote the (unique if any) term ¢ such that &(t) is the sub-
stitution normal form of (7, we have that ¥ o & is the iden-
tity on terms. The standard answer to the first question then
is: representing graphs are directed and acyclic (dags). An
equivalent characterisation in terms of substitution is:

graphs whose substitution normal form is a finite tree.

Uniqueness of substitution normal forms follows from con-
fluence which holds since the substitution rules are orthog-
onal to one another; they constitute an interaction net [6]. A
first answer to the second question is:

Lemma 2. (commutation) If G — H, then T(G) —o~
T(H), where —e» denotes multi-step reduction, con-
tracting a number of redexes in a term simultaneously.

(progress) If T(G) — s, then there exist G', H such
that G —, G’ — H, with the corresponding multi-
step T(G') —e»> T(H) contracting at least the redex
contracted by T(G) — s (note that T(G') = T(G)).

Remark 3. Depending on one’s needs more stringent con-
ditions can be put on the relationship, e.g. that graph rewrit-
ing of &(t) should terminate if term rewriting of ¢ does so.
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7. Cyclic substitution

Dropping the finiteness condition in the characterisation
of representing graphs above allows for the implementation
of (potentially) infinite terms. To see this, consider ones,
the infinite streams of 1s

1:1:1:1:...

For terms, this infinite stream can be brought about by
means of the letrec-construct

letrecx = L:zinz
For graphs, it suffices to forget the finiteness condition
on their substitution normal form in the characterisation

above, as then the stream can be represented as the graph
on the left in Figure 7. Indeed, computing the substitution

()
—D
ol e s
()
@

Figure 7. Infinite substitution normal form

normal form of this graph yields ‘in the limit’ an infinite
tree representing the infinite stream of 1s as suggested in
the figure. The results of the previous section for acyclic
substitutions should extend to this cyclic case. We expect
the implementation Lemma 2 can be shown by extending
the theory of infinitary rewriting [9] from terms to graphs.

Note that we employ the same rule schemata for comput-
ing substitutions as before, and that combining them with an
orthogonal TRS yields a combined system which is orthog-
onal, hence confluent. This is a bit surprising as it is well-
known that collapsing on the one hand all the gs and on the
other hand all the fs, in the infinite term f(g(f(g(-..))))
with respect to the orthogonal term rewrite rules g(x) — =
and f(x) — z, yields infinite terms f(f(...)) and g(g(...))
which are not joinable in the infinitary TRS. However, for
their cyclic representation this is not a problem as shown in
Figure 8; a so-called vicious circle [6] serves as the com-
mon reduct. A vicious circle is intuitively meaningless [9],
but that’s not needed here.

Remark 4. All infinite terms above represented by finite
graphs are regular. Allowing the context-free substitutions
to be introduced in the next section, non-regular ones such
as the stream of natural numbers can be represented too.
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Figure 8. Confluence using a vicious circle
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8 Scoping substitution

We now turn to implementing substitution for terms hav-
ing binding symbols such as A, V, > ete. in an atomic
manner. We treat the particular case of implementing -
reduction, i.e. substitution, for the A-calculus [2]. As run-
ning example we take the Church-numeral 2 given by

Az Ay.z(zy)

First, we switch to the nameless A-terms of [4], where each
variable is replaced by a (unary) natural number indicat-
ing by which X above it in the syntax tree the variable was
bound (counting from zero). The representation of 2 is

AX(S0)((S0)0)

Second, we reinterpret a successor S as an explicit scope
operator [5]; in a slogan: S stands for scope. The idea is il-
lustrated in Figure 9, displaying from left to right, the syntax

i | )

Ay A A

| | |

@ -a@ @ @ @-—a@

o b T T

T x vy S S 0 S—S—0
] R
4] 0 —0—0

Figure 9. Reinterpreting successor as scope

tree of the ordinary A-term 2, the syntax tree of its nameless
version, and that tree again with scopes explicitly indicated
by boxes. The boxes show that binding for an ordinary A-
term corresponds to matching for its nameless version: ev-
ery S corresponds to a unique matching A; any node below
the S is our of scope of the ), i.e. will not be affected by a
substitution for its variable. Thus, A-terms can be seen as
context-free trees. The idea is to introduce the scope op-
erator S into to our alphabet of substitution operators and
implement substitution such that the matching structure is
preserved. Unfortunately, this does not quite work because
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during B-reduction the neat nesting structure of boxes will
be lost, they may partially overlap, and we must for each
scope- and duplication-node individually keep track of how
deep it is nested. To that end, we also index our operators as
L; and v; for arbitrary depth 1, setting V = Vg and S = Llg.

9. Translating )\-terms

We present an inductive translation of closed A-terms
into graphs built out of the explicit substitution operators
and the function symbols A (abstraction) and @ (applica-
tion). Here a term t is closed if 0+t in the following infer-
ence system (to be read top—down)

SiI—OO Sif—StS ik At thtaty
it Sikt bt ikt

The nameless term 2 is closed, as shown in Figure 10. A

0+ AX(S0)((S0)0)
SO+ A(S0)((S0)0)
SSOH (S0)((S0)0)
SS0FS0 SSOH (S0)0
S0F0 °  SSOFSO soko
SOFO

0

Figure 10. Derivation showing 2 is closed

well-formed term ¢+ ¢ is mapped to a graph having ¢ + 1
free ports, which is defined by induction and cases (0, S, \,
and @) on the derivation, in Figure 11. Here a number i next

Figure 11. From \-terms to graphs.

to a slashed edge represents that in fact the edge is a ‘bus’
consisting of ¢ edges (connected (o an appropriate number
of nodes). Figure 12 shows the application (o 2.

10 Implementing 3-reduction

B-reduction is implemented by the rule in Figure 13. As
before substitution is dealt with by the two rule schemata
of Figure 5 (now annihilate is needed). In addition, indices
need to be updated, where an update is an increment of the
index ¢ (if any) of a substitution operator, which takes place
iff the other symbol is either X or LI i, with ¢ > j.



Figure 12. The graph translation of 2.

Figure 13. Translation of g-reduction rule

To get a flavour of this decomposition of -reduction into
atomic steps, in Figure 14 a part of the reduction of (an op-
timised translation of) 22 to graph normal form is shown.
Although each of the individual steps is simple, it is easy to
lose track of what is really happening, because there are so
many steps. Recalling that application of Church-numerals
is exponentiation, the final graph displayed should be a rep-
resentation of the Church-numeral 4. Indeed it is. For an
explanation as to why see [7]. There it is also shown that,
as for the first-order case above, the implementation is ad-
equate (Lemma 2). Again, the proof of adequacy does not
depend on acyclicity, so should generalise to cyclic A-terms.

11. Conclusion

We have presented an implementation of term rewrit-
ing based on keeping a clear distinction between on the
one hand the implementation of substitution (the substitu-
tion calculus in the terminology of [10]), and on the other
hand the implementation of operations on terms (here: the
term rewrite rules). We have illustrated this for both the
acyclic as well as the cyclic case, for first-order term rewrit-
ing and the A-calculus. The atomic decomposition of sub-
stitution presented is simple (three operators), easy to im-
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Figure 14. Reduction of 22

plement (two rule schemata), versatile (both acyclic and
cylic), and intuitive (erasure, duplication and scoping are
found in many contexts). We conclude with mentioning two
possible applications. Representing proofs: the graphs can
be seen as atomic decompositions of (the box in) Girard’s
proof nets for multiplicative exponential linear logic. Im-
plementing functional programming: the implementation of
B-reduction is in fact optimal in the sense of [1]. It would
be interesting to combine this with other techniques.
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