
Nieuwsbrief van de
Nederlandse Vereniging voor Theoretische Informatica

Susanne van Dam* Joost-Pieter Katoen Joost Kok Jaco van de Pol
Femke van Raamsdonk

Inhoudsopgave

Van de Redactie 2

Samenstelling Bestuur 2

NVTI Theory Day 2006 3

Mededelingen van de onderzoeksscholen 6
IPA 6
SIKS 10

Wetenschappelijke bijdragen 14
On the usefulness of formal methods

Freek Wiedijk 14
Towards building better classifiers with ROC analysis

Peter A. Flach 24

Ledenlijst 31

Statuten 48

* CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands. Email: Susanne.van.Dam@cwi.nl

NVTI Nieuwsbrief 1

Van de Redactie

Geachte NVTI-leden!

Als u dit leest, bent u inmiddels begonnen aan de NVTI nieuwsbrief voor het jaar 2006. Wat kunt u
zoal vinden in deze nieuwsbrief? Een belangrijk item is de aankondiging van de NVTI dag op 10
maart a.s. in Utrecht. Het programma is veelbelovend met befaamde buitenlandse sprekers zoals
Kurt Mehlhorn en Martin Abadi (wie kent hen niet?) en de aansprekende sprekers van eigen
bodem: Wan Fokkink en Mark de Berg. Kortom: genoeg redenen om 10 maart naar Utrecht te
komen!

De bijdragen van IPA en SIKS geven een indruk over de activiteiten van deze onderzoekscholen in
het afgelopen jaar. De technische bijdragen zijn van Freek Wiedijk (RUN) en Peter Flach (Univ.
Of Bristol. UK). Hartelijk dank daarvoor.

Met onze dank aan CWI, NWO, Elsevier, IPA, SIKS en OzsL voor de sponsoring van de NVTI
activiteiten, en Susanne van Dam en Anton Wijs voor de secretariële ondersteuning.

Namens de redactie en bestuur,

Joost-Pieter Katoen, hoofdredacteur
Joost Kok, voorzitter
Jaco van de Pol, secretaris

Samenstelling Bestuur

Prof. dr. Jos Baeten (TU/e)
Dr. Hans Bodlaender (UU)
Prof. dr. Harry Buhrman (CWI en UvA)
Prof. dr. ir. Joost-Pieter Katoen (RWTH en UT)
Prof. dr. Jan Willem Klop (CWI, RU en VU)
Prof. dr. Joost Kok (RUL) voorzitter
Prof. dr. John-Jules Meyer (UU)
Dr. Jaco van de Pol (CWI en TU/e) secretaris
Dr. Femke van Raamsdonk (VU)
Prof. dr. Grzegorz Rozenberg (RUL)
Prof. dr. Gerard Renardel de Lavalette (RUG)
Dr. Leen Torenvliet (UvA)

NVTI Nieuwsbrief 2

Invitation NVTI Theory Day, March 10, 2006

We are happy to invite you for the Theory Day 2006 of the NVTI. This event will
take place on Friday March 10, 2006 from 9:30 until 16:45, at Hoog Brabant, Utrecht
(close to Utrecht Central Station1).

As in previous years we have a strong program featuring excellent speakers from
the Netherlands and abroad, covering important streams in theoretical computer
science. Two lectures cover algorithms and complexity theory; the other two cover
logic and semantics.

Lecturers:

Mart́ın Abadi Reconciling Two Views of Cryptography
Mark de Berg I/O- and cache-efficient algorithms for spatial data
Wan Fokkink Oh Mega Completeness
Kurt Mehlhorn Reliable Geometric Computation

Please find below the program, the abstracts, a CV of the speakers and our sponsors.

Program

9.30-10.00: Arrival with Coffee
10.00-10.10: Opening
10.10-11.00: Lecture: Prof. Dr. Martin Abadi

(Microsoft Research and Un. of California at Santa Cruz)
Title: Reconciling Two Views of Cryptography

11.00-11.30: Coffee/Tea
11.30-12.20: Lecture: Prof. Dr. Mark T. de Berg (TU/e)

Title: I/O- and cache-efficient algorithms for spatial data
12.20-12.40: Dr. Mark Kas (NWO Exacte Wetenschappen/Physical Sciences)

The Research Agenda for Computer Science in The Netherlands
12.40-14.10: Lunch (see below for registration)
14.10-15.00: Lecture: Prof. Dr. Wan Fokkink (Free University and CWI)

Title: Oh Mega Completeness
15.00-15.20: Coffee/Tea
15.20-16.10: Lecture: Prof. Dr. Kurt Mehlhorn

(Max-Planck-Institute and University of Saarland)
Title: Reliable Geometric Computation

16.10-16.40: Business meeting NVTI

1From the big station hall, follow sign “Centrum”. At “Radboudkwartier” it is only 100 meter.

You find “Hoog Brabant” behind the info desk from shopping center “Hoog Catharijne”.

NVTI Nieuwsbrief 3

Abstracts

Reconciling Two Views of Cryptography (Mart́ın Abadi)

Two distinct, rigorous views of cryptography have developed over the years, in two
mostly separate communities. One of the views relies on a simple but effective for-
mal approach; the other, on a detailed computational model that considers issues of
complexity and probability. There is an uncomfortable and interesting gap between
these two approaches to cryptography. In this talk, we discuss this gap and the cur-
rent research efforts that aim to bridge it. We focus on computational justifications
for the formal treatment of encryption, and their recent applications to the study of
guessing attacks and to XML access control.

I/O- and cache-efficient algorithms for spatial data (Mark de Berg)

Modern computer systems have a hierarchal memory consisting of a disk, main
memory, and several levels of cache. The difference between the times to access these
different levels of memory is quite large. This is holds in particular for main memory
and disk: accessing the disk is typically about 100,000 times slower than accessing
the main memory. Hence, it is important to take caching- and I/O-behavior into
account when designing and analyzing algorithms. In this talk I discuss some of
the recent results that have been obtained on I/O- and cache-efficient algorithms,
focusing on algorithms and data structures for spatial data.

Oh Mega Completeness (Wan Fokkink)

In his CONCUR’90 paper, Rob van Glabbeek introduced sound and ground-complete
axiomatizations for the basic process algebra BCCSP, modulo the semantics in his
linear time - branching time spectrum. Also at CONCUR’90, Jan Friso Groote was
the first to address whether these axiomatizations are omega-complete. Since then,
positive and negative results have been obtained regarding the existence of omega-
complete axiomatizations for BCCSP modulo the semantics in the aforementioned
spectrum. In this talk I will give an overview of these results, the methods that
were used to obtain them, and the remaining open questions.

Reliable Geometric Computation (Kurt Mehlhorn)

Reliable implementation of geometric algorithms is a notoriously difficult task. Al-
gorithms are usually designed for the Real-RAM, capable of computing with real
numbers in the sense of mathematics, and for non-degenerate inputs. But, real
computers are not Real-RAMs and inputs are frequently degenerate. We start with
a short collection of failures of geometric programs. We then go on to discuss ap-
proaches to reliable geometric computation:
– realization of an efficient Real-RAM as far as it is needed for geometry,
– design of algorithms with reduced arithmetic demand,
– controlled perturbation.

NVTI Nieuwsbrief 4

Curricula Vitae of the Lecturers
Mart́ın Abadi is Professor of Computer Science at UCSC (since 2001) and Senior
Researcher at Microsoft (since 2006). Earlier, he studied at Stanford University and
worked at Digital’s System Research Center and other industrial labs. His research
is on computer and network security, programming languages, and specification and
verification methods. He has contributed, for example, to the design and analysis of
security protocols, to the foundations of object-oriented languages, and to temporal-
logic verification techniques. His web page is at www.soe.ucsc.edu/ abadi/home.html.

Mark de Berg received an M.Sc. in computer science from Utrecht University
in 1988, and he received a Ph.D. from the same university in 1992. Currently he
is a full professor at TU Eindhoven. His main research interest is in computational
geometry and its application to areas like GIS, computer graphics, and CAD/CAM.
He is (co-)author of two books on computational geometry and he has published
over 100 papers in journals and conferences.

Wan Fokkink obtained a PhD degree in Computer Science at the University of
Amsterdam in 1994. After a postdoc at Utrecht University and a lectureship at the
University of Wales Swansea, he became head of the Embedded Systems Group in
CWI in 2000. Since 2004 he is full professor at the Free University in Amsterdam,
and head of the Theoretical Computer Science Group. He is still affiliated to CWI
one day a week.

Kurt Mehlhorn is Professor of Computer Science at the University of Saarland,
and Director of the Max-Planck-Institute in Saarbrücken. His research interests are
data structures, graph algorithms, computational geometry with exact computa-
tion, algorithm engineering, and theoretical complexity. He is the founder of many
software libraries, among which the widely used LEDA software library.

Sponsors

The NVTI theory day 2006 is financially or otherwise sponsored by NWO (Nether-
lands Organisation for Scientific Research), Elseviers Science, CWI (Dutch Center
of Mathematics and Computer Science) and the Dutch research schools IPA (Insti-
tute for Programming Research and Algorithmics), OzsL (Dutch Graduate school in
Logic) and SIKS (Dutch research school for Information and Knowledge Systems).

Lunch registration

It is possible to participate in the organized lunch. Registration is required. Please
register by E-mail (Susanne.van.Dam@cwi.nl) or by phone (020-5924189), no later
than one week before the meeting (March 3). The costs of 15 Euro can be paid at
the location. We just mention that in the direct vicinity of the meeting room there
are plenty of nice lunch facilities as well.

NVTI Nieuwsbrief 5

www.win.tue.nl/ipa/

Institute for Programming research and Algorithmics

The research school IPA (Institute for Programming Research and Algorithmics) educates re-

searchers in the field of programming research and algorithmics. This field encompasses the study

and development of formalisms, methods and techniques to design, analyse, and construct software

systems and components. IPA has three main research areas: Algorithmics & Complexity, Formal

Methods, and Software Technology. Researchers from eight universities (University of Nijmegen,

Leiden University, Technische Universiteit Eindhoven, University of Twente, Utrecht University,

University of Groningen, Vrije Universiteit Amsterdam, and the University of Amsterdam), the

CWI and Philips Research (Eindhoven) participate in IPA. In 1997, IPA was formally accredited

by the Royal Dutch Academy of Sciences (KNAW). In 2002, this accreditation was extended for

a period of five years.

On the European front, IPA cooperates with the research schools BRICS (Denmark), TUCS

(Finland), UKII (United Kingdom), IP (Italy), GEFI (Germany), and FI (France) in the European

Educational Forum (EEF).

Activities in 2005

IPA has two multi-day events per year, the Lentedagen and the Herfstdagen, which focus on

a particular subject. In the 2002 - 2006 period, each of the Herfstdagen will be dedicated to

one of IPA’s four so-called application areas: Networked Embedded Systems, Security, Intelligent

Algorithms, and Compositional Programming Methods. In 2005, the Herfstdagen were dedicated

to Security, and the Lentedagen were on Software Architecture.

Lentedagen March 30 - April 1, 2005, hotel De Korenbeurs, Made
Software architecture is a topic that has figured in a low-key but consistent way throughout IPA

events in the past years. After having looked at component-based architectures (Herfstdagen 1999),

object-oriented architectures (Lentedagen on UML, 2000), and peer-to-peer systems (Lentedagen

on Middelware, 2002), this year’s Lentedagen had software architecture as the main topic, with

the aim of presenting an overview of recent developments in the field that are of interest to the IPA

community. The overall theme was architecture and change: dealing with change during design,

the design of systems that change, and analysis of the architecture of existing systems (with the

aim of changing them). The program contained sessions on variability, model driven and service

oriented architectures, and the reconstruction and assessment of architectures. It was composed

by Michel Chaudron (TU/e), Arie van Deursen (TUD,CWI), Arend Rensink (UT), and Eelco

Visser (UU). Abstracts, hand-outs and papers are available through the Lentedagen webpage:

www.win.tue.nl/ipa/archive/springdays2005/.

Herfstdagen on Security November 21-25,Hotel Zwartewater,Zwartsluis
IPA first organised an event on Security in 2001 (Lentedagen). The problems with computer

NVTI Nieuwsbrief 6

security that made this topic highly relevant to society then, persist today. However, the insight

that Security is not an add-on feature, but a fundamental aspect of software engineering, has

gained ground. Based on the experience of the Lentedagen, Security was chosen as one of IPA’s

four main application areas for the 2002-2006 period, and an initial general description of the area

was produced (see www.win.tue.nl/ipa/applicationareas). Since then, the area has proven to

be fertile ground for the IPA research community and Security research has grown considerably

both within and around IPA.

This year’s Herfstdagen looked at the current state of the field. The form of the program reflects

the fact that Security is about striking a balance between different, often conflicting, concerns. Two

such pairs of concerns, Identification & Privacy and Vulnerabilities & Resilience, are the theme for

the main parts of the program. Each part contained sessions on technology, theory (concepts and

formalisms) and applications. The sessions integrated contributions on academic and industrial

research with talks on societal aspects. Their themes were: biometrics, privacy & anonimity,

identification of civilians, RFID, electronic voting, software vulnerabilities, trust management,

secure data management, protocols, and security in organisations. The program was composed

by Pieter Hartel (UT), Bart Jacobs (RU), and Sjouke Mauw (TU/e). Abstracts, hand-outs, and

papers are available through the website at www.win.tue.nl/ipa/archive/falldays2005/.

IPA organises Basic Courses on each of its major research fields, Algorithms and Complexity,

Formal Methods and Software Technology. These Basic Courses intend to give an overview of

(part of) the research of IPA in these fields. In 2005, the first course of a new cycle was took place

in Eindhoven.

Basic Course on Algorithms and Complexity January 31 - February 4, TU/e
The Basic Course focussed on five subjects areas in algorithmics where succesfull research is be-

ing conducted by groups in IPA: operations research, graph and network algorithms, natural

computation, and alternative computational models. To each topic an entire course day was ded-

icated. The final course day addressed an interesting application area for algorithmic techniques.

Topics and teachers were: machine scheduling Han Hoogeveen (UU), randomized geometric algo-
rithms Mark de Berg (TU/e), evolutionary algorithms Han La Poutr and Peter Bosman (CWI),

quantum computing Harry Buhrmann (CWI), bio-informatics Hendrik Jan Hoogeboom and Wal-

ter Kosters (UL). More information on the course program is available through the webpage:

www.win.tue.nl/ipa/archive/algbasiccourse2005/

In addition to organising its own activities, IPA sponsored 4 further events: the Theoriedag 2005

of the NVTI (March 4, Utrecht), the first meeting of the Security PhD Association Netherlands

(May 27, TUD), the doctoral symposium of the fifth International Conference on Integrated Formal

Methods (IFM2005, November 29-December 2, TU/e), and the fourth international symposium

on Formal Methods for Components and Objects (FMCO 2005, November 1-4, CWI).

IPA Ph.D. Defenses in 2005

Erika Ábrahám (UL, 20 January), An Assertional Proof System for Multithreaded Java -Theory
and Tool Support- . Promotores: prof.dr. J.N. Kok, prof.dr. W.-P. de Roever. Co-promotores: dr.

F.S. de Boer, dr. M. Steffen. IPA-Dissertation Series 2005-01.

Cheun Ngen Chong (UT, 4 February), Experiments in Rights Control - Expression and En-
forcement. Promotor: prof.dr. P.H. Hartel. Co-promotor: dr. S. Etalle. IPA-Dissertation Series

2005-03.

Ronald Ruimerman (TU/e, 14 February), Modeling and Remodeling in Bone Tissue. Promo-

tores: prof.dr. P.A.J. Hilbers, prof.dr.ir. R. Huisken. IPA-Dissertation Series 2005-02.

Hui Gao (RuG, 15 April), Design and Verification of Lock-free Parallel Algorithms. Promotores:

prof.dr. W.H. Hesselink, prof.dr.ir. J.F. Groote. IPA-Dissertation Series 2005-04.

NVTI Nieuwsbrief 7

Ivan Kurtev (UT, 19 May), Adaptability of Model Transformations. Promotor: prof.dr. M.

Aksit. IPA-Dissertation Series 2005-08.

Mugurel Ionita (TU/e, 31 May), Scenario-Based System Architecting - A Systematic Approach
to Developing Future-Proof System Architectures. Promotores: prof.dr.dipl.-ing. D.K. Hammer,

prof.dr.ir. J.F. Groote. Copromotor: dr.ir. P.H.M. America. IPA-Dissertation Series 2005-06.

Harm van Beek (TU/e, 9 June), Specification and Analysis of Internet Applications. Promotor:

prof.dr. J.C.M. Baeten. Co-promotor: dr. S. Mauw. IPA-Dissertation Series 2005-05.

Thomas Wolle (UU, 13 June), Computational Aspects of Treewidth - Lower Bounds and Net-
work Reliability. Promotor: prof.dr. J. van Leeuwen. Co-promotor: dr. H. Bodlaender.. IPA-

Dissertation Series 2005-09.

Olga Tveretina (TU/e, 29 June), Decision Procedures for Equality Logic with Uninterpreted
Functions. Promotor: prof.dr.ir. J.F. Groote. Co-promotor: dr. H. Zantema. IPA-Dissertation

Series 2005-10.

Gabriele Lenzini (UT, 30 June), Integration of Analysis Techniques in Security and Fault-
Tolerance. Promotor: prof.dr. P. Hartel. Co-promotor: dr. S. Etalle. IPA-Dissertation Series

2005-07.

Anthony Liekens (TU/e, 5 July), Evolution of Finite Populations in Dynamic Environments.
Promotores: Prof.dr. P.A.J. Hilbers, Prof.dr. E.H.L. Aarts. Co-promotor: Dr.ir. H.M.M. ten

Eikelder. IPA-Dissertation Series 2005-11.

Jeroen Eggermont (UL, 14 September), Data Mining using Genetic Programming: Classifica-
tion and Symbolic Regression. Promotor: Prof.dr. J.N. Kok. Co-promotor: Dr. W.A. Kosters.

IPA-Dissertation Series 2005-12.

Bastiaan Heeren (UU, 20 September), Top Quality Type Error Messages. Promotor: Prof.dr.

S. Swierstra. Co-promotor: Dr. J. Hage. IPA-Dissertation Series 2005-13.

MohammadReza Mousavi (26 September), Structuring Structural Operational Semantics. Pro-

motores: Prof.dr.ir. J.F. Groote, prof.dr. G.D. Plotkin. Co-promotor: dr.ir.M.A. Reniers. IPA-

Dissertation Series 2005-15.

Goran Frehse (RU, 10 October), Compositional Verification of Hybrid Systems using Simulation
Relations. Promotores: Prof.dr. F.W. Vaandrager, prof.dr. S. Engel. IPA-Dissertation Series

2005-14.

Ana Sokolova (TU/e, 3 November), Coalgebraic Analysis of Probabilistic Systems. Promotor:

Prof.dr. J.C.M. Baeten. Co-promotor: Dr. E.P. de Vink. IPA-Dissertation Series 2005-16.

Tjalling Gelsema (UL, 8 November, Effective Models for the Structure of pi-Calculus Processes
with Replication. Promotor: Prof.dr. G. Rozenberg. Co-promotor: Dr. J. Engelfriet. IPA-

Dissertation Series 2005-17.

Atze Dijkstra (UU, 14 November), Stepping through Haskell. Promotor: Prof.dr. S.D. Swierstra.

IPA-Dissertation Series 2005-21.

Jurgen Vinju (UvA, 15 November), Analysis and Transformation of Source Code by Parsing
and Rewriting. Promotor: Prof.dr. P. Klint. Co-promotor: Dr. M.G.J. van den Brandt. IPA-

Dissertation Series 2005-19.

Peter Zoeteweij (UvA, 29 November), Composing Constraint Solvers. Promotores: Prof.dr.

K.R. Apt, prof.dr. F. Arbab. IPA-Dissertation Series 2005-18.

Yee Wei Law (UT, 1 December), Key Management and Link-layer Security of Wireless Sensor
Networks: Energy-efficient Attack and Defense. Promotor: prof.dr. P. Hartel. Co-promotor: dr.

S. Etalle. IPA-Dissertation Series 2005-22.

Miguel Valero Espada (VUA, 5 December), Modal Abstraction and Replication of Processes
with Data. Promotor: Prof.dr. W. Fokkink. Co-promotor: Dr. J.C. van de Pol. IPA-Dissertation

Series 2005-20.

NVTI Nieuwsbrief 8

Activities in 2006

The themes for the first major IPA-events of 2006 is known: the Lentedagen will be on Testing.

In addition, IPA is planning to stage two of its Basic Courses this year (Formal Methods and

Software Technology). The first Basic Course and the Lentedagen have a definite schedule. More

information on all upcoming activities will become available through the IPA web site.

Basic Course on Formal Methods January 16 - 20, TU/e.
The Basic Cours focusses on five main areas of Formal Methods research. One course day is

dedicated to each of these areas, in which lectures are combined with hands-on tool training.

Topics, tools and teachers are: introduction Jos Baeten (TU/e); interface specification (ISPEC)
& Calisto Hans Jonkers (Philips Research), Ruurd Kuiper & Erik Luit (TU/e); model check-
ing & SPIN, Joost-Pieter Katoen (RWTH Aachen), theorem proving & PVS, Erik Poll (RU),

process algebra & mCRL2, Jan Friso Groote (TU/e), business processes & Petri nets, Wil van

der Aalst (TU/e). More information on the course program is available through the website:

www.win.tue.nl/ipa/activities/fmbasiccourse2006/.

Lentedagen April 19-21.

The aim of the Lentedagen is to present an overview of the current research on testing in and

around IPA, with an emphasis on model-driven testing. The program is composed by Jaco van

de Pol (CWI), Judi Romijn (TU/e), Mariëlle Stoelinga (UT), and Jan Tretmans (RU). More

information will become available through the Lentedagen webpage as the program develops,

www.win.tue.nl/ipa/activities/springdays2006/.

Addresses

Visiting address Postal address

Technische Universiteit Eindhoven IPA, Fac. of Math. and Comp. Sci.

Main Building HG 7.22 Technische Universiteit Eindhoven

Den Dolech 2 P.O. Box 513

5612 AZ Eindhoven 5600 MB Eindhoven

The Netherlands The Netherlands

tel. (+31)-40-2474124 (IPA Secretariat)

fax (+31)-40-2475361

e-mail ipa@tue.nl

url www.win.tue.nl/ipa/

NVTI Nieuwsbrief 9

School for information and Knowledge Systems in 2005

Richard Starmans (UU)

Introduction
SIKS is the Dutch Research School for Information and Knowledge systems. It was founded in
1996 by researchers in the field of Artificial Intelligence, Databases & Information Systems and
Software Engineering. Its main concern is research and education in the field of information and
computing sciences, more particularly in the area of information and knowledge systems (IKS).
SIKS is an interuniversity research school that comprises 12 research groups from 10 universities
and CWI. When SIKS received its accreditation by KNAW in 1998, only 35 Ph.D. students and
about 70 research fellows were involved in the school. Currently, nearly 350 researchers are
active, including 170 Ph.D.-students. The Vrije Universiteit in Amsterdam is SIKS' administrative
university. The office of SIKS is located at Utrecht University In June 2003 SIKS was re-
accreditated by KNAW for another period of 6 years.

Organisation:
In 2005 Prof .dr. R.J. (Roel) Wieringa (University of Twente) has been appointed as the new
scientific director of SIKS. As of January 1 2006 he stepped into the shoes of prof. dr. J.-J. (John-
Jules) Ch. Meyer (Utrecht University), who held this position for nearly a decade.
Roel Wieringa studied mathematics and philosophy and obtained his phd at the Vrije Universiteit in
Amsterdam in 1990. His dissertation was entitled “Algebraic Foundations for Dynamic Conceptual
Models.” In 1998 he became a full professor at Twente University, where he currently holds the
Chair “Ïnformation Systems” at the Faculty of Electrical Engineering, Mathematics and Computer
Science. He has been a member of the board of governors of SIKS as of 1998. Wieringa has
accepted the appointment for a period of three years.
John-Jules Meyer will keep his position at the scientific board of SIKS as focus director for Agent
systems, one of SIKS' eight research foci.

Activities
We here list the main activities (co-)organized or co-financed by SIKS. We distinguish basic
courses, advanced courses and other acitivities (including masterclasses, workshops, one-day
seminars, conferences and research colloquia)

Basic courses

“Research methods and methodology for IKS", November, 21-23, 2005 Woudschoten, Zeist
Course directors: dr. H. Weigand (UvT), prof. dr. R. Wieringa (UT),
prof. dr. J-J.Ch. Meyer, dr. R. Starmans (UU)

“Combinatory Methods”, May 09-11, 2005, Landgoed Huize Bergen, Vught
Course director: dr. N. Roos (UM)

“Learning and Reasoning”, May 11-13, 2005, Landgoed Huize Bergen, Vught
Course director:dr. A. Ten Teije (VU)

“Formal methods for IKS”. December 19-21, 2005, Landgoed Huize Bergen, Vught
Course directors: prof. dr. E.O. Postma (UM), prof. dr. J.-J, Ch. Meyer (UU)

“Agent systems” December 21-23, 2005, Landgoed Huize Bergen, Vught
Course directors: prof.dr. C. Jonker (RUN), prof. dr. J.-J, Ch. Meyer (UU)

NVTI Nieuwsbrief 10

Advanced courses

“Computational Intelligence”, February 17-18 2005, Woudschoten, Zeist
Course directors: prof.dr. A.P.J.M. Siebes (UU), dr. U. Kaymak (EUR)

"XML: where databases and information retrieval meet" , April 18-19, 2005, Leusden
Course directors: Dr. ir. D. Hiemstra (UT), Dr. ir. M. van Keulen (UT)

“Summer course on Datamining”, June 27- July 01, 2005, Maastricht
Course directors: Dr. E. Smirnov (UM), Dr. J. Donkers (UM), Prof. dr. E.O. Postma (UM)

“Business Process Integration", September 19-20, 2005 Best Western Dish hotel, Enschede
Course director: dr. H. Weigand (UvT)

Other activities

• 10-11 January 2005 Workshop on Information Retrieval, DIR 05, Utrecht
• 26 January 2005 SIKS-IKAT Symposium "Go at the frontiers of AI", Maastricht
• 17-18 February 2005 Benelearn 2005, Enschede
• 15 March 2005 Symposium: Waarheid in Taal, Amsterdam
• 19 May 2005 IKAT-SIKS Symposium: Machine Learning for Commercial Game AI , Maastricht
• 18-22 Juli 2005 EASSS 2005; agent systems summer school, Utrecht
• 17-18 October 2005 BNAIC 2005, Brussel
• 31 October 2005 Dutch-Belgian Database Day, Amsterdam
• 11 November 2005 SIKS-day 2005, Utrecht
• 23 November Symposium on Computer science and Law, Leiden
• 30 November 2005 IKAT-SIKS Symposium: The nature of representation, Maastricht
• 20 December 2005 Symposium on E-commerce and fair trade principles, Leiden
• SIKS-IKAT Research colloquium: organized 6 times in Maastricht
• CABS-SIKS Research colloquium, organized 6 times in Delft en Utrecht
• IKS-SIKS Information science seminar, organized 7 times in Utrecht

Promotions in 2005

In 2005 21 researchers successfully defended their Ph.D.-thesis and published their work in the
SIKS-dissertation Series.

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing Induction-Based Applications
Promotor: Prof. dr. B.J. Wielinga (UVA)
Co-promotor: dr. M.W. van Someren (UVA)
Promotion: 28 January 2005

2005-02 Erik van der Werf (UM)
AI techniques for the game of Go
Promotor: prof. dr. H.J. van den Herik (UM)
Co-promotor: dr. J.W.H.M. Uiterwijk (UM)
Promotion: 27 January 2005

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Language
Promotores: prof. dr. ir. Th. P. van der Weide (RUN), prof. C.H.A. Koster (RUN)

NVTI Nieuwsbrief 11

Promotion: 26 January 2005

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data
Promotores: prof. dr. P.M.G. Apers (UT)
Co-promotor: Dr. Ir. R. A. de By (ITC)
Promotion: 23 February 2005

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for Natural Language Parsing
Promotores: prof. dr. M. de Rijke (UVA), prof. dr. R. Scha (UVA)
Promotion: 06 April 2005

2005-06 Pieter Spronck (UM)
Adaptive Game AI
Promotores: prof.dr. H.J. van den Herik (UM), prof.dr. E.O. Postma (UM)
Promotion: 20 May 2005

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Semantic Web Information Systems
Promotores: Prof.dr. P. De Bra (TUE) Prof.dr.ir. G-J. Houben (VUB/TUE)
Co-promotor: Prof.dr. J. Paredaens (TUE/UA)
Promotion: 20 June 2005

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Distributed Ontology-based Web Applications
Promotores: Prof.dr. P. De Bra (TUE) Prof.dr.ir. G-J. Houben (VUB/TUE)
Co-promotor: Prof.dr. J. Paredaens (TUE/UA)
Promotion: 20 June 2005

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Semantic Web Languages
Promotor: Prof.dr. F. van Harmelen (VU)
Promotion: 04 July 2005

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative Simulation in Interactive Learning Environments
Promotores: Prof. dr. B. J. Wielinga (UVA), Prof. dr. J. A. P. J. Breuker (UVA)
Co-promotor: Dr. B. Bredeweg (UvA)
Promotion: 06 July 2005

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A Decentralized Approach to Search
Promotores: prof.dr. F.M.T. Brazier (VU), prof.dr.ir. M.R. van Steen (VU)
Promotion: 05 April 2005

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry
Promotor: prof.dr. A. de Bruin (EUR)
Prof.dr.ir. A. Verbraeck (Delft University/University of Maryland)
Promotion: 21 Oktober 2005

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

NVTI Nieuwsbrief 12

Promotores: prof.dr. H.J.van den Herik (UM/UL), prof.dr.H.M.Dupuis (UL),
prof.Dr.E.O.Postma (UM)
Promotion: 24 November 2005

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic Web; Exploring how semantics meets
pragmatics
Promotores: prof dr. A.Th. Schreiber (VU), prof dr. J.M. Akkermans (VU)
Promotion: 12 October 2005

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes
Promotores: Prof. dr. J. Treur (VU) , Prof. dr. C.M. Jonker (RUN)
Promotion: 23 November 2005

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages
Promotor: Prof.dr.ir. G.J. van der Steen (UU)
Co-promotor: dr. H. van Oostendorp (UU)
Promotion:17 October 2005

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business Components
Promotor: prof.dr.ir. J.L.G. Dietz (TUD)
Promotion: 26 September 2005

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic networks
Promotor: Prof.dr.ir L. C. van der Gaag (UU)
Promotion:17 October 2005

2005-19 Michel van Dartel (UM)
Situated Representation
Promotores:prof.dr. E.O. Postma (UM), prof.dr. H.J. van den Herik (UM)
Promotion: 1 December 2005

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives
Promotores:prof.dr. H.J. van den Herik (UM), prof.dr. G. Howells (Sheffield)
Promotion: 20 December 2005

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Systems by Exploiting Application
Semantics
Promotor: Prof.dr. W. Jonker (UT)
Promotion:16 November 2005

NVTI Nieuwsbrief 13

On the usefulness of formal methods

Freek Wiedijk

Institute for Computing and Information Sciences
Radboud University Nijmegen

The editor of this newsletter has asked me to write something for it. Now it

would be easiest for me to just write about my research subject, formalization
of mathematics, and how that field will fundamentally change the way that

mathematicians look at proof. (‘There will be a time when mathematicians will

only consider something to be “proved” if the proof has been encoded in full

detail in a computer, all the way to the axioms of set theory, and if that encoding

has been completely checked by that computer. When that time has arrived, a

mathematical article will only be accepted for publication if it is accompanied

by a formal, computer-checked counterpart.1 The referees then only will have to

judge whether the result is new and interesting, and not whether it is correct . . .

because that will then be known already.’)

However, that will not be the main topic of this essay. Instead, I will focus

on the subject of the usefulness of working on technology for proving software
correct. That is, the usefulness of using methods from mathematical logic to

develop a technology for creating programs that are free of ‘bugs’.2

Some years ago I was working on the formalization of the Fundamental Theorem

of Algebra3 in the Coq system. A formalization is an encoding of a mathematical

proof in such detail, that the computer can verify the mathematical correctness

without any further human interference. When one formalizes a proof, it is not

the computer that provides the proof. Instead it is the human who ‘guides’ the

1 In the field of mathematical logic this already occasionally happens today.
2 In the NOAG-ict 2005–2010, which is the research agenda for Dutch computer sci-

ence research, the field of formal methods does not have a research theme of its
own. It has been put there as part of theme number six, intelligente systemen, the
theme for artificial intelligence. To me that shows a fundamental misunderstanding
of where the main promise of formal methods lies, what formal methods is all about.
It really should have been in the theme that contains the study of algorithms and
programming languages, theme number seven: methoden voor ontwerpen en bouwen.

3 The Fundamental Theorem of Algebra was the subject of the 1799 PhD thesis of
Carl Friedrich Gauss. It states that the field of the complex numbers is ‘algebraically
closed’, which is a compact way of saying that every non-constant polynomial has
a zero, and that therefore every polynomial can be written as a product of linear
factors. The Fundamental Theorem of Algebra has three formalizations, which were
all finished in the year 2000. The first formalization was done using the Polish system
Mizar by Robert Milewski. The second formalization was done using the British
system HOL Light by John Harrison. The third formalization was done using the
French system Coq by Herman Geuvers, with a group of people to which I also
belonged. This third formalization encoded a proof that is more complicated than
the usual ones, because it also is intuitionistically valid.

NVTI Nieuwsbrief 14

proof, although he is supported by the automation of routine proof tasks that

the computer provides.

Writing a formalization is an activity that is very similar to writing a large

computer program. The languages that one uses when formalizing are very sim-

ilar to programming languages, and the activity of modelling a proof in such a

language is also very similar to the activity of programming. To show the kind of

code that one writes when formalizing, here are the final lines in the Coq proof

of the Fundamental Theorem of Algebra:

. . .
intro H0. apply H0.

intro i. generalize (Hs i).

intro H1; inversion_clear H1; assumption.

exact (seq_is_CC_Cauchy n H0n q qnonneg qlt10 (AbsCC p ! Zero[+]One)

Hp s Hs2).

intro i; generalize (Hs i); intro Ha; elim Ha; intros; assumption.

exact (less_plusOne _ (AbsCC p ! Zero)).

apply zero_lt_posplus1.

apply AbsCC_nonneg.

Qed.

Note that this looks much like ‘computer code’. However, there is a big difference

between writing a computer program and writing a formalization. When one

writes a formalization, one can be completely sure that it will be correct. In

contrast with this a program of a non-trivial size will always have ‘bugs’. (Every

programmer knows that.4)

At a recent Dagstuhl conference about the use of computers in mathematics,

a mathematician in the audience who did not know much about formalization

could not believe that this kind of total correctness is possible. He clearly be-

lieved that because formalization is a human activity, it surely should be taken

into account that there would be mistakes. But no. (For instance, I am quite

confident that our formalization of the Fundamental Theorem of Algebra is 100%

correct.) At that same conference there was a girl who had formalized something,

also using the Coq system. She knew about formalization. And she confidently

proclaimed that she would be willing to bet 100,000 dollars that her work was

totally free of errors. Now I would not go that far that I would bet such an

amount on it, but I still am sure that she was right about the correctness of her

work.5

4 When I learned how to program, I was very much surprised that one makes mistakes
all the time. My programs would often behave in ways that to me seemed completely
impossible, even when I took into account that there would be some mistakes in it.
(Of course like everyone I got used to this phenomenon, but initially this was very
surprising to me.)

5 Let me analyze what are the possibilities for mistakes when doing a formalization.
I think that there are three. The first is the possibility of bugs in the software
that checks the formalization. Now of course there will be bugs in that software.
But it is rather unlikely that such bugs would accidentally allow someone to have

NVTI Nieuwsbrief 15

When we were formalizing the Fundamental Theorem of Algebra, we were

using the versioning system CVS to keep track of our files. With this system a

group of people can all work on a bunch of files simultaneously. When I described

CVS to a programmer friend who had no experience with it, he told me that

with such a system he would very much worry about different people making

inconsistent changes to the files. And then I told him that if I would use CVS

for programming, then I would worry about that too. But we used CVS with

Coq, and therefore we did not have to worry about this at all! We used the rule

that one was only allowed to check in files when the whole set was accepted by

the system as being correct. This meant that at any time the files in the system

would be a consistent whole. And therefore one could work with CVS without

having to worry about modifications of someone else in the group ‘breaking’

something that one had done.

The experience of formalizing with Coq was wonderful. It was like program-

ming, but then knowing that there were no mistakes, that there were no bugs

at all.

But then, after the formalization of the Fundamental Theorem of Algebra

was finished, I went back to ‘normal’ programming. That was scary! It was like

someone had removed the safety net: I could make mistakes again!

Now the moral of this story is that I think that in working with Coq I have

tasted the future of programming. Eventually (and I do not say that I know how

or when) I expect the technology of programming to develop into a form that

gives one the experience that I had with Coq. When that happens, programs

will generally be free of bugs. Today this sounds unthinkable, but I really do

believe that this will come about.

the system proclaim incorrect mathematics to be correct. Problems with normal
programs are hardly ever caused by compiler bugs either. Also, the systems that
check formalizations for correctness generally have an architecture that localizes the
correctness of the check to a very small part of the program, a ‘proof checking micro-
kernel’. (Henk Barendregt calls this principle of having such a micro-kernel the de

Bruijn criterion, after the pioneer of formalization N.G. de Bruijn.) This makes it
even more unlikely that bugs in the checker will allow incorrect mathematics to
accidentally ‘slip through’ the system.

The second possibility to have incorrect mathematics accidentally be accepted by a
proof checking system is that the logical foundations of that system are inconsistent.
While this certainly is not unthinkable (for instance, the Coq system is closely related
to the logical systems of Per Martin-Löf, whose very first logical system happened
to be inconsistent; so maybe his current crop of logics also is inconsistent, and we
just are not smart enough to see this), again I think it is very unlikely that because
of this one would prove falsehoods by accident.

The third possibility to make ‘mistakes’ in a formalization is that the definitions
of the notions that one reasons about are not what one thinks them to be. This is
the only significant problem of the three. However, once one proves many lemmas
about a small number of definitions, one can be quite confident that these definitions
mean what the formalizer thinks they mean.

NVTI Nieuwsbrief 16

I expect this development to come from the culture of the research field

that is called ‘formal methods’. Eventually. It is the reason that I think formal

methods are a useful part of computer science.

Does this mean that I am advocating people to download Coq and start using

it to prove their programs correct. No, certainly not! What I am saying is that

the culture of proof assistants like Coq will be a fertile ground from which a new

kind of programming will develop eventually. I am not saying that these proof

assistants already are useful for more than proving the correctness of rather

simple programs (programs like the Vector class from the Java library; proving

that correct does not seem very important for practical work.)

Still, researchers that use proof assistants are already doing interesting things

with it. For example there is the ‘Cminor’ compiler from INRIA, which has

been built by Xavier Leroy. This compiler, called Compcert, has been proved

correct using Coq (so there is a real possibility that its correctness approaches the

correctness of our Fundamental Theorem of Algebra formalization). It compiles

a realistic subset of the C programming language called Cminor to PowerPC

assembly code, applying non-trivial code optimizations on the way. Xavier Leroy

is the man behind one of the best compilers of functional languages in the world

– the ocaml compiler of the ML language – and I consider it very interesting

that he wants to spend his time on using proof checking technology for creating

a provably correct program.

Another program, one that can really be relied on to be correct is the Four

Color Theorem6 program by Georges Gonthier. (At some point Georges Gonthier

went to work for Microsoft. Please note: the most impressive formalization in

the world is owned by Microsoft!) The Four Color Theorem was proved in the

seventies using a very controversial approach. Part of the proof was the running of

a computer program that went through millions of graph colorings. This program

ran for days, then, and a modern version of that program, coded in C, still

takes minutes to run. At that time the mathematicians were not satisfied by

this approach. They wondered how one could be sure that the program did not

contain bugs. What Georges Gonthier did was rewrite the program in a purely

functional subset of ML, and then prove that version correct in Coq. And he

did more: he also formalized all the graph theory and topology needed to prove

a very clean and natural version of the Four Color Theorem statement. (This

proof was an extension of the correctness proof of his version of the program.)

In case you are interested, the statement that he proved was:

forall m : map R, simple_map m -> map_colorable 4 m

This was formalized in a way that the micro-kernel of the Coq system can check

the correctness of the formalization all the way down to the Coq axioms. And to

do this checking Coq also runs the – provably correct – program that is part of

6 The Four Color Theorem states that every ‘map’ can be colored using four colors in
such a way that two neighboring countries always have a different color. For a very
long time this was a famous open problem, until it finally was proved in 1975 by
Kenneth Appel and Wolfgang Haken.

NVTI Nieuwsbrief 17

the formalization. The running of that program only takes on the order of days

(on an ordinary PC.)

In case you wonder how the notions map, simple_map and map_colorable

that occur in this statement are defined, here are some relevant definitions that

I lifted from Gonthier’s files:

Inductive point : Type := Point (x y : R).

Definition region : Type := point -> Prop.

Definition intersect (r1 r2 : region) : region :=

fun z => r1 z /\ r2 z.

Definition subregion (r1 r2 : region) := forall z, r1 z -> r2 z.

Definition map : Type := point -> region.

Definition inmap (m : map) : region := fun z => m z z.

Definition covers (m m’ : map) := forall z, subregion (m z) (m’ z).

Definition size_at_most n m :=

exists f, forall z, inmap m z -> exists2 i, i < n & m (f i) z.

Record proper_map (m : map) : Prop := ProperMap {

map_sym : forall z1 z2, m z1 z2 -> m z2 z1;

map_trans : forall z1 z2, m z1 z2 -> subregion (m z2) (m z1)

}.

Record simple_map (m : map) : Prop := SimpleMap {

simple_map_proper :> proper_map m;

map_open : forall z, open (m z);

map_connected : forall z, connected (m z)

}.

Definition border (m : map) z1 z2 :=

intersect (closure (m z1)) (closure (m z2)).

Definition corner_map m z : map :=

fun z1 z2 => m z1 z2 /\ closure (m z1) z.

Definition not_corner m z := size_at_most 2 (corner_map m z).

Definition adjacent m z1 z2 := meet (not_corner m) (border m z1 z2).

Record coloring (m k : map) : Prop := Coloring {

coloring_proper :> proper_map k;

coloring_inmap : subregion (inmap k) (inmap m);

coloring_covers : covers m k;

coloring_adj : forall z1 z2, k z1 z2 -> adjacent m z1 z2 -> m z1 z2

}.

Definition map_colorable n m :=

exists2 k, coloring m k & size_at_most n k.

(I left out the definitions of topological notions like open, connected and clos-

ure, to prevent this list of definitions from becoming too long. These notions

mean what you would expect them to mean.)

NVTI Nieuwsbrief 18

Now the Four Color Theorem program is certainly not a trivial program. The

ML version that Georges Gonthier proved correct is around 2,500 lines long (even

the C version is around 1,000 lines), and it uses very smart tricks to make it run

as fast as possible. It certainly has not been designed to be straight-forward, to

make the proofs easy. That it can be proved correct shows that proof checking

of programs has reached some maturity.

Various technologies have been developed for proving programs correct. They

fall roughly in two classes:

– Either one takes existing programming technology, and then adds a layer

on top of that, which guarantees that the program is correct. This means

that one writes a program like one always does it, but then uses software

that analyzes it in some way (often the statement that is proved about

the program then is just something like ‘all array indices will stay within

bounds and no nil pointers will be dereferenced’7), or maybe annotates it

with invariants and then generates a series of lemmas from that which then

can be proved using a proof assistant.8

– Alternatively, one can change the way one develops software, to make it more

abstract, more mathematical. For instance one might restrict programming

to a purely functional language (as is the case both with the Cminor com-

piler and with the program from Georges Gonthier’s Four Color Theorem

formalization). Or one might require the user to develop his or her program

by first making an abstract specification, and then refine that specification

to the real program. (As far as I understand it, that is what one does when

using the ‘B method’9).

7 An example of a system like this is Microsoft’s SDV (Static Driver Verifier), see

http://research.microsoft.com/slam/

Apparently at Microsoft some people seem to be thinking that formal methods are
useful for analyzing production code. Bill Gates even is quoted calling the use of
‘actual proof about the software’ to be ‘the Holy Grail of computer science’.

8 A very nice example of systems that implement this are Jean-Christophe Filliâtre’s
Why and Caduceus tools. See the web page at:

http://why.lri.fr/caduceus/index.en.html

It is surprising to me that there is not more work being done on systems that follow
this general approach.

9 The B method was used to prove the software correct that manages a line of the Paris
metro that has driverless trains. (One would like not to have metro trains collide
because of bugs in the software.) This is most that I know about the B method,
really. Well, I also know that the logical foundations that it uses is a variant of ZF
set theory.

NVTI Nieuwsbrief 19

Or, a method that used to be popular in the type theoretical community

(although no one believes much in it anymore): one can just take a formal-

ization of a proof, and then automatically extract a program from that.10

I do not know very well what position I take between these two approaches. On

the one hand I do not think these methods will find wide adoption when pro-

grammers are forced into a mathematical straight-jacket, when they are required

to program with their hands bound behind their backs so to say. For instance, I

certainly do not think that purely functional programming (where you have to

model all input/output, mutable data structures, exceptions etc. using so-called

monads) will ever conquer the world.

On the other hand I think that the most efficient way to really reduce the

number of software problems is not to have programmers prove things about

programs the way they are now, but instead to have them change to a bit more

abstract world view. Let me try to give two examples of what I mean by this.

I would expect that many of the problems with the – surprisingly popular

– Microsoft Windows platform (bugs; but also the proliferation of viruses and

worms that occurs there) often are caused by simple things like buffer over-

runs and dereferencing of nil pointers. Now suppose that Windows was not pro-

grammed in languages like C++, which really just is sugared assembly language,

but instead was programmed in a more abstract language like ML.11 Then the

worst that could happen would be an uncaught exception, and nothing really bad

10 I have a nice story about program extraction. The Fundamental Theorem of Al-
gebra formalization that we created was a formalization of an intuitionistic proof.
Therefore one could extract programs from it (although the proof had not been es-
pecially chosen for that.) Now the Fundamental Theorem of Algebra says that every
non-constant polynomial has a root. This means that we could extract a root-finding

algorithm. It took a couple of months to extract the program (there were some bugs
in the extraction code), but when we finally got it and ran it, nothing happened.
The program just ran and ran without producing any output. Then we tried some-
thing simpler. Part of our formalization was the Intermediate Value Theorem, the
statement that says that if a function is negative somewhere and positive somewhere
else, that it then has a zero in between. (This happens not to be provable intuitionis-
tically: our formalization had an intuitionistic form of it.) By applying this theorem
to the polynomial x

2 − 2 we extracted a program that calculates
√

2. The output
of this program is a stream of fractions that converges to that value. When we ran
it, the program immediately output the value 0 (every instance of the Intermediate
Value Theorem algorithm would do this, regardless of the function that one would
put in), and then, after running for hours, it finally output a second 0. However, this
second 0 had a smaller limit on how far it was from the desired value of

√
2. There

never was a third output. And, although we tried very hard, we never understood
what the program was doing all that time.

11 The ML programming language was spin off from the formal methods world. One
of the first proof assistants in the world was the LCF system from the seventies.
The ML language was at first only developed to program ‘tactics’ for this system.
(In this respect it is similar to the Ltac language for the Coq system that is being
developed right now.)

NVTI Nieuwsbrief 20

could happen. This is not just something that I would expect. It is my experience

that when one programs in ML it might be a bit harder to fit what one wants to

do into the framework of the language, but then one needs to spend much less

time on debugging. There is an anecdote related to this: when a friend of mine

first learned a functional programming language, he decided to try programming

in it by ‘cloning’ his programmable pocket calculator, with all the functions and

buttons. It took him quite some time to fit the behavior of this calculator in the

type system of the functional language. When he finally succeeded with this, he

expected that he would need to debug it for a similar long time. But the program

ran, and ran correctly, at the first try.

Another example of what I mean when I say that ‘an abstract world view

is important’ is the example of how one looks at files. In the operating systems

of the sixties and seventies files where rather involved objects. One needed to

tell the system in some detail where the files would be put on the sectors of

the disk, and there would be different kinds of files related to how one did this,

with names like ‘direct’ and ‘indexed sequential’ files. But then with systems like

Unix, a file became a much more abstract object. It now just was a sequence

of bytes, and how it would be put on the disk was abstracted away. This was a

huge improvement from the point of view of understanding what was going on.

I would like to see more of that kind of abstraction in programming.

For instance, I think it would be a good thing if there would be no integer

overflow.12 I would think that systems would be better behaved if they were pro-

grammed in languages like Lisp and Smalltalk where the system automatically

switches to ‘bignum’ behavior when the numbers go outside of the range of ma-

chine words. This might sound like a trivial change, but not many programming

languages provide this, and wanting this is a good example the ‘mind set’ that

I think will change the way we program.

Let me talk a bit about what research in formal methods currently looks like,

and how it currently is applied to get better software.

My impression of the field of formal methods is that most papers are about

deductive systems (carrying fancy names like ‘ACPτ ’, ‘the π-calculus’, ‘STTwU’,

‘MLWextPU<ω’, ‘λ̄μμ̃’, etc.) These papers define those systems using pages of

deductive rules, and then prove all kinds of things about them and (sometimes)

describe experiments with implementations that are based on them. If I am

honest, I expect that most of those deductive systems will go nowhere. However,

they are part of the culture that will produce the few systems that will matter,

and, like I already said, I expect that this eventually will be very important for

software quality.

The technology of formal methods already is being used to prove the correct-

ness of various kinds of software and hardware. Now I think that the word prove
is a bit misleading here. That suggests certainty, and indeed, a proof will give

absolute certainty about some property of the program. However what should be

proved is generally not totally clear. This means that the application of formal

12 I have been told that some kinds of election fraud make use of the fact that voting
machines occasionally fail to notice integer overflow.

NVTI Nieuwsbrief 21

methods in computer science, despite its use of ‘proofs’, does not really give a

guarantee that the program will behave as desired, but instead should just be

considered to be a rather thorough (and expensive) form of debugging.

To explain why I think that it is not possible to get total certainty about

the correctness of programs using proofs: consider proving the LATEX program of

Donald Knuth and Leslie Lamport (and after them many others who extended

and improved their system) to be correct. What should be the statement that

one should prove for this? Suppose that LATEX puts some text in some document

in a wrong font style because of a bug somewhere: how could I have prevented

this by proving things about it? The statement that describes how LATEX should

behave (the specification) is of a similar size as the LATEX source code itself. And

it is almost as difficult to get this statement correct as it is to get the program

itself correct!

And then, even when the statement that you prove actually is what you want

it to be, often assumptions in the specification about the real world will be able

to cause trouble. This means that even if you prove that something will not

happen, it still might happen. For example, even if you prove that trains will

not collide, there is not a total guarantee that the trains actually will not do this.

I once saw this demonstrated very clearly. There was a demo of an application

of formal methods where, as a case study, a little toy train was running on a toy

track. The software that drove that toy train had been proved correct. However,

the toy train had a toy accident right in front of my eyes, because the sun was

shining in its sensors. Apparently the assumptions in the model that had been

used in the proof of the safety of this toy train were not satisfied at that time.

I also would like to say something about the relationship between formalization

of mathematics and formalization in computer science. There seems to be a trend

in formal methods to move to tools that check specific properties of programs

(like for instance that variables will not be used when they have not yet been

initialized, or that there will be no overflow) without any human intervention,

this in contrast with systems like proof assistants that are very general and

therefore by necessity interactive. Of course we eventually will need both kinds

of system: one should not underestimate the importance of being able to step in

and tell the system what to do when the automation does not cut it anymore.

When interactively proving properties of programs, it is important to be able

to reason in a ‘mathematical’ style. Therefore we should have good technology

for formalizing mathematical proofs too. I do not see a dichotomy between for-

malization of mathematics and the applications of formalization in computer

science. On the contrary: I think that the thing that is most needed to make

formal methods more powerful is the ability to work in a style that is as math-

ematical as possible.

Luckily, there recently has been much progress in the mathematics that can

be formalized. At the start of 2005, formalizations of three famous theorems were

finished:

– the Four Color Theorem, using Coq, by Georges Gonthier

– the Prime Number Theorem, using Isabelle/HOL, by Jeremy Avigad

NVTI Nieuwsbrief 22

– the Jordan Curve Theorem, using HOL Light, by Tom Hales13

(There are two other theorems that have not been formalized yet, but that are

always mentioned when people talk about formalization of mathematics. They

are:

– the classification of finite simple groups

– Fermat’s last theorem

Georges Gonthier told me that he will start working on the first one. And Jan

Bergstra put the second one up as a ‘grand challenge’ for computer science. It

will be interesting to see whether anyone will take him up on this challenge.14)

Nowadays ‘big’ theorems can be practically formalized, with a lot of work.

But on a more mundane scale, the technology also has become good enough to

routinely formalize ordinary mathematics.

Some time ago I found a ‘top hundred’ of nice theorems on the web. I decided

to investigate how many of them had already been formalized. The result is on:

http://www.cs.ru.nl/~freek/100/

Currently three quarters of this list has been formalized, and this fraction is

growing fast. The three systems that formalized the most are HOL Light and

ProofPower (both are variants of the HOL system) and the Mizar system. Appar-

ently those three systems are currently the best for formalization of mathematics.

In this essay I tried to argue for two things. First, in the field of formalization of

mathematics interesting things are happening. And second, developments from

the field of formal methods might lead to a culture change in software develop-

ment that will lead to better software quality everywhere. The first statement I

know to be true from my own research experience. The second statement I hope

and expect to become true too.

13 Later in 2005 a formalization of the proof of the Jordan Curve Theorem using the
Mizar proof assistant was also finished.

14 A challenge that already has been taken up is the formalization of the proof by
Tom Hales of the ‘Kepler conjecture’, which states what is the densest way to pack
spheres in space. Hales calculates that the formalization of his proof will take twenty
years, and calls his project Flyspeck.

NVTI Nieuwsbrief 23

Towards building better classifiers with ROC analysis

Peter A. Flach, University of Bristol

January 21, 2006

Today, every internet user is familiar with unsolicited bulk email or spam. This is particularly true for

computer scientists, who typically have a high web presence and whose email addresses are therefore easily

harvested. As an illustration, over the last ten days I received close to 100 spam emails per day. Fortunately,

the majority of those spam emails gets filtered out, in my case by a combination of SpamAssassin which

runs on the server and adds headers assigning a spam score to each email; and the built-in junk mail filter

of Apple Mail. While SpamAssassin uses a hand-crafted rule base to calculate the spam score, Apple

Mail uses a Bayesian classifier to recognise spam emails. In a nutshell, Bayesian spam filters work by

estimating the probabilities of word w to occur in spam, P(w|spam), and the probabilities of word w to

occur in non-spam, P(w|ham), for all words in a dictionary, from a training set. If a new email comes

in, the classifier estimates the likelihood of observing this email if it were spam as ∏w P(w|spam)∏w′(1−
P(w′|spam)), where w ranges over all dictionary words occurring in the email and w′ over all dictionary

words not occurring in the email. Similarly, the likelihood of observing this email if it were non-spam is

estimated as and ∏w P(w|ham)∏w′(1−P(w′|ham)). We then multiply these likelihoods with the appropriate

prior probability, P(spam) or P(ham), and predict the class which maximises this product.

It has been shown that this Bayesian decision rule does not necessarily result in the best predictions [6].

The reason is that Bayesian classifiers make unjustifiable independence assumptions (e.g., that occurrence

of the words ‘Viagra’ and ‘sex’ are independent in spam emails), and therefore the likelihood estimates are

not accurate. This doesn’t necessarily mean that the likelihood estimates cannot be used for prediction, but

it does mean that the decision rule shouldn’t only be based on prior probabilities and needs to be learned

from the data. This leads us to the problem of how to threshold a continuous value to make binary decisions,

which is an old problem originally studied in signal detection theory.

In its simplest form, signal detection theory [2, 5] involves the following decision problem. A binary

signal with values 0 and d is corrupted by normally distributed noise with zero mean and unit variance.

The noisy signal is transmitted to a receiver, who has to reconstruct the original binary signal – that is, the

receiver needs to take a decision at each time point whether the signal was absent (0) or present (d), based on

a measurement x of the corrupted signal (a number in the interval (−∞,∞). This situation can be visualised

by means of two Gaussian probability density functions, one centred around 0 (the ‘signal absent’ Gaussian,

denoted p(x|absent)) and the other centred around d (the ‘signal present’ Gaussian, denoted p(x|present)).
Two sets of data points are sampled from the two Gaussians, and the aim is to reconstruct which point came

from which Gaussian (Figure 1). The difficulty of the problem depends on the signal strength d, although it

is of course possible that a particular sample is non-overlapping and perfect reconstruction is possible.

In the absence of any other information, most people would probably agree that the most sensible strategy

for the receiver is to threshold the received value at x0 = d/2, and to decide that the signal was present if

the measurement exceeds this value, and absent otherwise. However, this raises a number of issues, such

as: How does the resulting accuracy depend on the signal strength d? What should our strategy be if we

don’t know d? Should we change the threshold if we know that, e.g., the signal is only present in 10% of

the cases? If yes, how? And how do we take into account that a false positive (a decision that the signal was

present when in fact it was absent) might be more costly than a false negative (the signal was present but

1NVTI Nieuwsbrief 24

Figure 1: Two unit-variance Gaussians with means at 0 and 2, modelling noisy transmission of a binary

signal with values 0 and d = 2. Also shown are measurements sampled from each Gaussian (× indicates

‘signal absent’ points, and ◦ indicates ‘signal present’ points).

undetected)? How does all this depend on the noise model?

This simple probabilistic model exemplifies a kind of decision problem arising in a range of disciplines

from electrical engineering to experimental psychology. The basic idea is that a detection problem can be

characterised, for the whole range of possible detection thresholds, by a Receiver Operating Characteristic
curve or ROC curve. Given a threshold x0, we can distinguish four quantities:

• the true positive rate tpr =
R ∞

x0
p(x|present)dx;

• the false positive rate fpr =
R ∞

x0
p(x|absent)dx;

• the false negative rate f nr =
R x0
−∞ p(x|present)dx = 1− tpr;

• the true negative rate tnr =
R x0
−∞ p(x|absent)dx = 1− fpr.

An ROC curve is a plot of true positive rate (percentage of signal present that was detected) against false pos-

itive rate (percentage of signal absent that led to incorrect detection), for all possible decision thresholds (see

the outermost smooth curve in Figure 2). By construction, an ROC curve is monotonically non-decreasing,

starts in (fpr = 0, tpr = 0) corresponding to threshold +∞ (i.e., the signal is always considered absent), and

finishes in (fpr = 1, tpr = 1) corresponding to threshold −∞ (i.e., the signal is always considered present).

A particular point on the ROC curve is called an operating point. The shape of the curve depends on the

strength of the signal: the closer the Gaussians are together, the harder it is to detect the signal and the closer

the ROC curve will be to the ascending diagonal, which indicates random performance. Conversely, the

larger the signal strength d, the easier it is to detect the signal and the closer the ROC curve will be to the

step function going through (fpr = 0, tpr = 1). (Equivalently, we could keep the signal strength constant and

vary the noise variance.)

The default strategy of setting x0 = d/2 can – in this simple setting – be understood in two ways: (i) as

the point where the likelihood ratio P(x0|present)
P(x0|absent) = 1; (ii) as the point where tpr+ fpr = 1. From the fact that

true and false positive rates are obtained by integrating the two Gaussian probability densities, it follows

that the likelihood ratio is the slope of the curve in the operating point corresponding to the threshold x0.

2NVTI Nieuwsbrief 25

Figure 2: The outermost smooth curve is a theoretical ROC curve, constructed from the underlying model.

The other smooth curve is obtained by estimating the means of the two Gaussians from the sample; it is

lower than the theoretical ROC curve because the sample means are less far apart than the true means. The

jagged curve is obtained by non-parametric estimation, by sliding a decision threshold over the likelihood

ratio; it will become smoother (and closer to the theoretical ROC curve) if we increase the size of the sample.

The first strategy thus corresponds to finding the operating point with slope 1, while the second strategy

correspond to intersecting the curve with the descending diagonal. In the more general case of non-uniform

priors, the first strategy is easily adapted to select the point where the likelihood ratio is equal to
P(absent)
P(present) .

Intuitively, this means that when the signal is more often absent than present we select a point closer to

(fpr = 0, tpr = 0), while we get closer to (fpr = 1, tpr = 1) if the signal is more often present than absent.

The prior thus tells the decision maker whether it is more important to achieve a low false positive rate,

or rather to achieve a high true positive rate. The same mechanism can be exploited to take non-uniform

misclassification costs (and possibly non-uniform correct classification profits) into account.

Another way in which the signal detection framework can be generalised is by assuming that the two

Gaussians have different variances (for instance, because of additional Gaussian noise in the process gener-

ating the signal d). In this case the likelihood ratio will exhibit a local minimum, resulting in a non-convex

ROC curve. Figure 3 illustrates this situation. The left figure shows that unequal-variance Gaussians in-

tersect at two points, and hence there are two thresholds where the likelihood ratio is one. The middle

figure shows that the ROC curve is non-convex, and that of the two operating points with slope one the left

one is better (corresponding to the right-most intersection point on the left figure). The right figure plots

the log-likelihood ratio as a function of the threshold, which shows two zero crossings (corresponding to a

likelihood ratio of one) with a local minimum in between. Other shapes of ROC curves can be obtained by

considering non-Gaussian densities.

The unequal-variance case suggests an alternative decision strategy: to threshold the likelihood ratio

rather than the measured signal. In the equal-variance case the likelihood ratio is monotonically increasing

with the measurement threshold, which means that the two strategies yield the same result. However, with

unequal variances, thresholding the likelihood ratio results in disjoint decision regions. For instance, suppose

that we threshold the likelihood ratio at one: Figure 3 shows that the region between the two intersection

points is then classified as ‘signal absent’, while the outer two regions are classified as ‘signal present’.

3NVTI Nieuwsbrief 26

Figure 3: Gaussians with different variances lead to non-convex ROC curves if the decision criterion is a

threshold on the measurement value. Left: true distributions and sampled points. Middle: non-convex ROC

curve. Right: log-likelihood ratio as a (non-monotonic) function of the threshold.

Consequently, the true and false positive rates are obtained by integrating the Gaussians over these two

disjoint regions. It can be shown that, if we threshold the likelihood ratio, the ROC curve is always convex,

with the slope in an operating point equal to the likelihood ratio threshold.

This latter strategy of thresholding the likelihood ratio is in fact the dominant one in machine learning

and data mining, particularly because of the necessity to deal with multiple independent variables simultane-

ously. Shifting attention to the type of classification problem prevalent in machine learning and data mining

highlights another shortcoming of the basic signal detection framework, which is that the true underlying

distributions are needed to construct the ROC curve (for this reason they are sometimes called theoretical
ROC curves). So let us now assume that all we have are two samples from the two Gaussians modelling the

negative and positive class (the × and ◦ points in Figure 1), and we have to estimate the ROC curve. Two

strategies immediately suggest themselves:

• parametric estimation: fit two Gaussians to the data by estimating the two class-conditional means

and possibly variances, and construct an ROC curve by integrating over the fitted Gaussians;

• non-parametric estimation: slide a decision threshold over the likelihood ratio, and take the relative

frequencies of positives and negatives in the positive class region(s) as estimates of the true and false

positive rates in the corresponding operating point.

The two methods are illustrated in Figure 2. The parametric method is possible in principle in cases where

the learned classifier is parametric (e.g., our Bayesian spam filter), although in the case of multiple inde-

pendent variables this requires integration over multivariate Gaussians. The non-parametric method is most

often used in practice, because it doesn’t make any assumptions about the classifier and thus is equally

applicable to probabilistic classifiers and to non-parametric models such as decision trees.

For finite samples there are only a finite number of different likelihood ratios that are assigned to test

points. So rather than sliding a threshold over the likelihood ratio, it is more efficient to construct the esti-

mated ROC curve from the actual likelihood ratios assigned to test points. The following simple procedure

constructs the curve from the test points, ranked on decreasing likelihood ratio: starting in (fpr = 0, tpr = 0),
make a step up if the next test point is positive, otherwise make a step to the right for a negative point. In the

case of ties, we make the required number of steps up and to the right as one diagonal step. By scaling the

vertical step size to one divided by the total number of positives and the horizontal step size to one divided

by the total number of negatives, we are guaranteed to end up in (fpr = 1, tpr = 1). Figure 4 shows an ROC

4NVTI Nieuwsbrief 27

curve thus constructed from a test set with 50 positives and 50 negatives. The number of different likelihood

ratios assigned to test points is in fact less than 50, and thus there are a fair amount of ties which manifest

themselves as segments longer than the horizontal or vertical step size (this includes all diagonal segments).

Figure 4: Test set ROC curve: points indicate different likelihood ratios, line segment longer than the step

size (including diagonal segments) indicate ties.

It is worth pointing out that for test set ROC curves there is no equivalence between the likelihood ratio

as predicted by the classifier and the slope of the curve. This can be clearly seen in Figure 4: whereas

the predicted likelihood ratios are – by construction – monotonically decreasing along the curve, the slope

is not. Segments of constant slope indicate either ties in the predicted likelihood ratios, or a segment in

the ranking where the class distribution is more or less constant, or a combination of both. We can only

distinguish between those cases if we don’t just plot the ROC curve as a piecewise linear curve, but also plot

the points which receive different likelihood ratios. Figure 4 contains several segments, such as the initial

vertical segment, the longer horizontal segments to the top right, but also the middle diagonal segment.

While the curve contains several distinct points in those segments, it is clear that it would make little or no

difference if all test points in the segment would receive the same likelihood ratio. Put differently, while

the classifier thinks it makes sense to distinguish points in the segment, the test set demonstrates that this

distinction is actually unnecessary and doesn’t lead to improved performance. There is reason to believe

that a classifier which is actually aware of this, and only assigns different likelihood ratios to points in

segments with different slopes, is a better classifier than one which makes unnecessary distinctions. Such

a classifier is said to be well-calibrated [1]. However, ROC curves provide insufficient support for such an

analysis, because the likelihood ratios are only used to construct the ranking and are ignored afterwards.

Consequently, two classifiers predicting different likelihood ratios resulting in the same ranking would be

characterised by the same test set ROC curve. So an interesting open problem is to extend ROC analysis

such that it takes likelihood ratios into account.

To further illustrate the point, consider Figure 5. We have sampled points from two Gaussians with

unequal variances, but the classifier assumes unit variance and only estimates the means from the data. Con-

sequently, the test set ROC curve is non-convex; essentially, it can be closely approximated by a 3-segment

curve (vertical segment at the start, then a nearly flat segment, followed by another vertical segment). This

means that we could discretise the likelihood ratios in three bins without loss of information. The right

5NVTI Nieuwsbrief 28

Figure 5: Left: a non-convex test set ROC curve. Right: the slope of the test set ROC curve on the vertical

axis against the predicted likelihood ratio on the horizontal axis.

figure plots the slope of the test set ROC curve in an operating point (estimated by sliding a 3-point window

over the ranking) against the predicted likelihood ratio in that point. Here, slope and likelihood ratio have

been renormalised to the [0,1] interval using the transformation x �→ x
x+1 . Ideally, this likelihood ratio curve

should stay close to the ascending diagonal – however, the actual curve has two defects: (i) it starts in (0,1)
rather than (0,0), corresponding to the vertical segment at the end of the ROC curve; and (ii) it has a plateau

below the diagonal in the middle, corresponding to the concavity in the right half of the ROC curve.

The main point of this analysis is to show that ROC curves contain a wealth of information about the

behaviour of classifiers. In particular, segments with constant slope indicate locally random behaviour, and

two or more segments forming a concavity indicate locally worse than random behaviour. I believe that it

is possible to utilise such information to improve models – for instance, we can get rid of the concavity in

Figure 5 by discretising the likelihood ratio in two bins, one corresponding to the initial vertical segment of

the ROC curve, and the other corresponding to the rest. It has recently been shown that we can do better than

that, by inverting (rather than collapsing) the ranking in the second segment [4]. Work on such ROC-based

model improvement has only recently started, and poses a number of interesting questions.

• Can we incorporate predicted likelihood ratios in the ROC curve, for instance by varying the step

size? Or is it better to plot those likelihood ratios explicitly, for instance as done in Figure 5?

• What is a good method for smoothing test set ROC curves in order to estimate slopes? Are there

alternatives to the obvious sliding-window approach? How should the window size be chosen? What

is the statistical justification for this?

• The shape of the curve is determined by a combination of factors: (i) sampling effects, (ii) estimation

effects, (iii) a mismatch between the true model and the fitted model, and (iv) the inherent complexity

of the classification problem. For instance, Figure 2 demonstrates both sampling effects and estima-

tion effects, as well as an upper bound on average performance in the form of the theoretial ROC

curve. Figure 3 demonstrates a mismatch between fitted and true model, and Figure 5 shows the com-

bined effects of sampling, estimation and model mismatch. Can we come up with a general theory to

understand, describe and quantify these effects?

6NVTI Nieuwsbrief 29

• The number of dimensions in a full ROC analysis is quadratic in the number of classes. How can we

generalise the approach to multiple classes while remaining tractable?

ROC analysis already has a considerable impact on current work in machine learning and data mining

[3]. Answering these open questions will enable us to exploit its full potential.

References

[1] I. Cohen and M. Goldszmidt. Properties and benefits of calibrated classifiers. In J.-F. Boulicaut, F. Es-

posito, F. Giannotti, and D. Pedreschi, editors, PKDD, volume 3202 of Lecture Notes in Computer
Science, pages 125–136. Springer, 2004.

[2] J.P. Egan. Signal detection theory and ROC analysis. Academic Press, New York, 1975.

[3] P.A. Flach. The many faces of ROC analysis in machine learning, 2004. ICML’04 tutorial notes,

http://www.cs.bris.ac.uk/ flach/ICML04tutorial/.

[4] P.A. Flach and S. Wu. Repairing concavities in ROC curves. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI’05), pages 702–707. IJCAI, August 2005.

[5] D.M. Green and J.A. Swets. Signal detection theory and psychophysics. Wiley, New York, 1966.

[6] N. Lachiche and P.A. Flach. Improving accuracy and cost of two-class and multi-class probabilistic

classifiers using ROC curves. In Proc. 20th International Conference on Machine Learning (ICML’03),
pages 416–423. AAAI Press, January 2003.

7NVTI Nieuwsbrief 30

Leen
Text Box
The following pages (31--47) contains a list of members in the original (paper) version of the newsletters. To protect the privacy of our members, these pages have been removed.

NVTI Nieuwsbrief 48

NVTI Nieuwsbrief 49

NVTI Nieuwsbrief 50

	2006_1.pdf
	2006_2.pdf

