
Nieuwsbrief van de
Nederlandse Vereniging voor Theoretische Informatica

Susanne van Dam1 Joost-Pieter Katoen Joost Kok Jaco van de Pol
Femke van Raamsdonk

Inhoudsopgave

Van de Redactie en Bestuur 2

Samenstelling Bestuur 2

NVTI Theory Day 2007 3

Mededelingen van de onderzoeksscholen 6
IPA 6
SIKS 10

Wetenschappelijke bijdragen 14
Adaptive Agents in Complex Negotation Games

Valentin Robu, Koye Somefun & Han La Poutré 14
Expressivity of finitary coalgebraic logics

Clemens Kupke 28
Lekker bomen

Loredana Afanasiev, Balder ten Cate & Maarten Marx 38
Reasoning about recursive processes in shared-variable concurrency

Frank de Boer 53

Statuten 67

1 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands. Email: Susanne.van.Dam@cwi.nl

NVTI Nieuwsbrief 1

Van de redactie en bestuur

Geachte NVTI-leden!

De NVTI nieuwsbrief van 2007 ligt voor u, of heeft u in de hand. Zoals gebruikelijk vindt u hierin
de aankondiging voor de NVTI theoriedag, die dit jaar op vrijdag 9 maart in Utrecht plaatsvindt.
Sprekers dit jaar zijn: Tom Ball (Microsoft), Nitin Saxena (CWI), Rineke Verbrugge (RUG) en
Gerhard Woeginger (TU/e). Dit programma is naar onze smaak voldoende reden om op 9 maart
naar Utrecht af te reizen.

De wetenschappelijke bijdragen dit jaar zijn van Clemens Kupke (CWI/UvA) over co-algebras,
Frank de Boer (UU/CWI) over semantiek van een programmeertaal met recursie, threads en
shared variables, en Valentin Robu, Koye Somefun en Han la Poutré over adaptieve strategieën in
multi-agent spelen. Daarnaast wordt u uitgenodigd door Balder ten Cate, Loredana Afanasiev en
Maarten Marx (UvA) om lekker te bomen. Dat de onderzoekscholen IPA en SIKS het afgelopen
jaar ook niet hebben stilgezeten blijkt uit hun lijst van activiteiten. Wij danken alle auteurs voor
hun bijdrage.

Na vele jaren van (zeer) trouwe dienst, hebben Hans Bodlaender en Grzegorz Rozenberg hun
bestuursfunctie in 2006 neergelegd. Wij bedanken hen hartelijk voor hun inzet voor de NVTI.
Mark de Berg (TU/e) is bereid gevonden zitting te nemen in het bestuur.

Tenslotte danken wij het CWI, NWO, Elsevier, IPA, SIKS en OzsL voor de sponsoring van de
NVTI activiteiten, en Susanne van Dam en Anton Wijs voor de secretariële ondersteuning.

Namens de redactie en het bestuur van de NVTI,

Joost-Pieter Katoen, hoofdredacteur
Joost Kok, voorzitter
Jaco van de Pol, secretaris

Samenstelling bestuur

Prof. dr. Jos Baeten (TU/e)
Prof. dr. Mark de Berg (TU/e)
Prof. dr. Harry Buhrmann (CWI en UvA)
Prof. dr. ir. Joost-Pieter Katoen (RWTH Aachen en UT)
Prof. dr. Jan-Willem Klop (CWI, RUN en VU)
Prof. dr. Joost Kok (UL), voorzitter
Prof. dr. John-Jules Meyer (UU)
Dr. Jaco van de Pol (CWI en TU/e), secretaris
Dr. Femke van Raamsdonk (VU)
Prof. dr. Gerard Renardel de Lavalette (RUG)
Dr. Leen Torenvliet (UvA)

2 NVTI Nieuwsbrief

Invitation NVTI Theory Day, Friday March 9, 2007

We are happy to invite you for the Theory Day 2007 of the NVTI. The Dutch Assso-
ciation for Theoretical Computer Science (NVTI) supports the study of theoretical
computer science and its applications.

This event will take place on Friday March 9, 2007 from 9:30 until 16:45, at Hoog
Brabant, Utrecht (close to Utrecht Central Station1).

Again, we managed to compose an interesting program with excellent speakers
from The Netherlands and abroad, covering both important streams in theoretical
computer science. Two lectures cover algorithms and complexity theory, and two
lectures cover logic and semantics.

Lecturers

Tom Ball (Microsoft) On the Design and Implementation of Static Analysis Tools
Gerhard Woeginger (TU/e) Division of a shared resource
Rineke Verbrugge (RUG) Reasoning about others in multi-agent systems
Nitin Saxena (CWI) Identities and Complexity

Sponsors

The NVTI theory day 2007 is financially or otherwise sponsored by NWO (Nether-
lands Organisation for Scientific Research), Elseviers Science, CWI (Dutch Center
of Mathematics and Computer Science) and the Dutch research schools IPA (Insti-
tute for Programming Research and Algorithmics), OzsL (Dutch Graduate school in
Logic) and SIKS (Dutch research school for Information and Knowledge Systems).

Lunch registration

It is possible to participate in the organized lunch. Registration is required. Please
register by E-mail (Susanne.van.Dam@cwi.nl) or by phone (020-5924189), no later
than one week before the meeting (March 2, 2007). The costs of 15 Euro can be
paid at the location. We just mention that in the direct vicinity of the meeting room
there are plenty of nice lunch facilities as well.

1From the big station hall, follow sign “Centrum”. At “Radboudkwartier” it is only 100 meter.
You find “Hoog Brabant” behind the info desk from shopping center “Hoog Catharijne”.

NVTI Nieuwsbrief 3

Program

9.30-10.00: Arrival with Coffee
10.00-10.10: Opening
10.10-11.00: Lecture: Dr. Thomas Ball (Microsoft Research)

Title: On the Design and Implementation of Static Analysis Tools
11.00-11.30: Coffee/Tea
11.30-12.20: Lecture: Prof. Dr. Gerhard J. Woeginger

Title: Division of a shared resource
12.20-12.40: Dr. Mark Kas (NWO Exacte Wetenschappen/Physical Sciences)

It’s a long way there. Developments at NWO Physical Sciences
12.40-14.10: Lunch (see below for registration)
14.10-15.00: Lecture: Dr. Rineke Verbrugge (RUG)

Title: Reasoning about others in multi-agent systems
15.00-15.20: Coffee/Tea
15.20-16.10: Lecture: Dr. Nitin Saxena (CWI)

Title: Identities and Complexity
16.10-16.40: Business meeting NVTI

Abstracts

On the Design and Implementation of Static Analysis Tools

(Thomas Ball)

At Microsoft, we now regularly apply a new generation of static analysis tools that
can automatically identify serious defects in programs. These tools examine millions
of lines of code every day, long before the software is released for general use. With
these tools, we catch more defects earlier in the software process, enabling Microsoft
to deliver more reliable systems. A number of these tools have been released for
general use through Microsoft’s Visual Studio integrated development environment
as well as freely available development kits.

In this talk I will address the question: ”How does one design and implement
a static analysis tool chain to help people effectively address a software reliability
problem?” In particular, I will identify a set of basic techniques that have proven very
useful in constructing static analysis tools and have shown their worth through nu-
merous applications. Experience with these techniques suggests we are approaching
an exciting time when more people can contribute to the design and implementation
of static analysis tools.

4 NVTI Nieuwsbrief

Division of a shared resource

(Gerhard J. Woeginger)

The talk discusses various notions of “fairness” when n processes have to share a
common resource. We describe and analyze some simple protocols, and compare
their various advantages and disadvantages. The quality of a protocol is usually
measured in the worst-case number of queries that the protocol issues to the pro-
cesses. We present some lower bound results on the number of these queries, and
we discuss the trade-off between keeping this number small and reaching decent
approximate fairness.

Reasoning about others in multi-agent systems

(Rineke Verbrugge)

Everyone reasons about others almost daily – when leading a team, negotiating
a raise, deciding whether to send email to a group of colleagues with the ‘cc’ or
the ‘bcc’ option, or deciding how to formulate feedback tactfully. Social cognition
and cooperation are essential to success in human life and increasingly essential to
modern computer science.

Multi-agent systems consist of dynamically cooperating computational systems,
engineered to solve complex problems that require expertise and capabilities be-
yond the individual components. Investigations into cooperative interactions in the
behavioral sciences and computer science show a marked convergence: after all, peo-
ple cooperate, machines cooperate, and mixed teams consisting of software agents,
robots and people cooperate, sometimes even better than people and machines sep-
arately.

The area of multi-agent systems has started in the early nineties from distributed
artificial intelligence. In recent years fields like social psychology, game theory, logic,
and argumentation theory have also contributed substantially to multi-agent systems
in order to understand cooperation and to design effective computational and mixed
human-machine multi-agent systems.

Understanding social interactions requires rich formal models of cooperation and
social cognition, because multi-agent systems consist of several agents that can act
and communicate autonomously, without central control. This talk will present
some recent results about cooperation and social cognition in multi-agent systems,
as seen from the logical point of view.

Identities and Complexity

(Nitin Saxena)

Given an arithmetic circuit C computing a polynomial over variables x1, . . . , xn
,

we want to check whether C is the zero circuit. This problem is called Polynomial
Identity Testing (PIT). It is a fundamental computational problem with connections
to various other problems in computational complexity theory. In this talk we will
survey Identity Testing and discuss potential approaches.

NVTI Nieuwsbrief 5

www.win.tue.nl/ipa/

Institute for Programming research and Algorithmics

The research school IPA (Institute for Programming Research and Algorithmics) educates re-
searchers in the field of programming research and algorithmics. This field encompasses the study
and development of formalisms, methods and techniques to design, analyse, and construct software
systems and components. IPA has three main research areas: Algorithmics & Complexity, Formal
Methods, and Software Technology & Engineering. Researchers from eight universities (University
of Nijmegen, Leiden University, Technische Universiteit Eindhoven, University of Twente, Utrecht
University, University of Groningen, Vrije Universiteit Amsterdam, and the University of Amster-
dam), the CWI and Philips Research (Eindhoven) participate in IPA. In 1997, IPA was formally
accredited by the Royal Dutch Academy of Sciences (KNAW). In 2002, this accreditation was
extended for a period of five years. In 2006, IPA set its agenda for the 2007 - 2012 period (see
“IPA 2007-2012” below), and applied for an extension of its accreditation by the KNAW.

Early in 2007, Delft University became the ninth university to sign on, when its Software
Engineering Research Group (led by Arie van Deursen) joined IPA.

Activities in 2006

IPA has two multi-day events per year which focus on current topics, the Lentedagen and the
Herfstdagen. In 2006, the Lentedagen were dedicated to Testing and the Herfstdagen were on
Stochastic Systems.

Lentedagen on Testing April 19 - 21, 2006, Landgoed Huize Bergen, Vught
Testing is an important technique for validating and checking the correctness of software, but it
is traditionally a difficult, expensive, laborious, and error-prone part of the software engineering
process. However, over the past decade it has also proven to be a fertile area for the application of
formal methods. The community of IPA researchers spotted the possible benefits of using formal
methods in testing early on, it has been a prominent application area ever since the school was
founded.

At present, the emphasis in IPA is on model-based testing, and its extensions to real-time
(and hybrid) testing, symbolic (or data) testing, and component-based testing. Hence, the model-
based approach was the focus of the Lentedagen, which aimed to provide an overview of the current
state of the field in and around IPA. The event featured guest speakers from both academia and
industry: Antti Huima (Conformiq, Espoo Finland), Moez Krichen (Verimag, Grenoble), Vlad
Rusu (Inria, Rennes), Ina Schieferdecker (Fraunhofer, Berlin), and Margus Veanes (Microsoft
Research, Redmond). The program was composed by Jaco van de Pol (CWI), Judi Romijn
(TU/e), Mariëlle Stoelinga (UT), and Jan Tretmans (RU).

Abstracts, hand-outs and papers are still available through the archive on the IPA-website:
www.win.tue.nl/ipa/archive/springdays2006/.

6 NVTI Nieuwsbrief

Herfstdagen on Stochastic Systems November 27 - December 1, Hotel Marijke, Bergen
Traditionally, a distinction is made in computer science between functional (qualitative) and non-
functional (quantitative or performative) properties of systems. Models and techniques for the
analysis and validation of these two kinds of properties were developed in separate communities:
researchers in Formal Methods concentrated on the qualitative properties of systems, whereas
researchers in Performance Analysis focussed on quantitative properties.

In modern systems, like embedded and networked systems, the distinction between functional
and performance properties is getting blurred: both kinds of properties are of equal importance,
and often properties of one kind affect properties of the other kind. This was recognized in the
’90’s, when a move towards integrated frameworks started, in which methods and techniques
from Formal Methods are brought together with probabilistic and stochastic approaches from
Performance Analysis.

Researchers in IPA have played an active role in bringing about this synthesis, and the research
school has dedicated its Lentedagen to this topic in 1999 and an EEF Summer School in 2000. The
aim of this year’s Herfstdagen was to present an overview of the current state of this flourishing
research area.

The Herfstdagen presented different approaches to the modelling and analysis of stochastic
and probabilistic systems (with sessions on automata, stochastic and probabilistic process algebra,
model checking of discrete and continuous Markov chains, Markov decision processes and infinite
state models), and also highlighted applications of these approaches in other domains (such as
biological systems, systems engineering, and security). A new and succesful feature for this year’s
Herfstdagen was the ”clinic” on the probabilistic symbolic model checker on PRISM (University of
Birmingham). Dave Parker, a member of the core development team, gave a half day introduction
to the tool consisting of a tutorial combined with a hands-on lab-session.

The program for the event was composed by Jos Baeten (TU/e), Boudewijn Haverkort (UT),
Joost-Pieter Katoen (RWTH Aachen), and Frits Vaandrager (RU). Abstracts, hand-outs, and
papers are available through the IPA website at www.win.tue.nl/ipa/archive/falldays2006/.

IPA organises Basic Courses on each of its major research fields, Algorithms and Complexity,
Formal Methods and Software Technology. These Basic Courses intend to give an overview of
(part of) the research of IPA in these fields, and are organized at regular intervals on a cyclic
schedule. In 2006, two courses were held.

IPA Basic Course on Formal Methods January 16 - 20, TU/e, Eindhoven
The Basic Course, composed by Jos Baeten (TU/e) focussed on five main areas of Formal Methods
research. One course day was dedicated to each of these areas, combining lectures with hands-on
tool training.

Topics, tools, and teachers were: Introduction to Formal Methods (in IPA), Jos Baeten (TU/e);
ISPEC & Calisto, Hans Jonkers (Philips Research), Ruurd Kuiper & Erik Luit (TU/e); Model
Checking & SPIN, Joost-Pieter Katoen (RWTH Aachen); Theorem Proving & PVS, Erik Poll
(RU); Process Algebra & mCRL2, Jan Friso Groote (TU/e); Business Processes & Petri Nets, Wil
van der Aalst (TU/e).

IPA Basic Course on Software Technology September 18 - 22, TU/e, Eindhoven
The Basic Course, composed by Mark van den Brand (TU/e), focussed on central areas of Software
Technology research in IPA. The course days dedicated to these areas combined lectures with
hands-on tool training.

Topics, and teachers were: Introduction, Mark van den Brand (TU/e); Aspect-Oriented Soft-
ware Development, Lodewijk Bergmans (UT), Tree Oriented Programming, Jeroen Fokker (UU),
Generic Language Technology, Mark van den Brand (TU/e), Jurgen Vinju (VU) & Steven Klusener
(VU), Strategic Programming, Eelco Visser & Martin Bravenboer (UU), Software Technology for
Software Evolution, Marius Marin, Cathal Boogerd (TUD), Magiel Bruntink (CWI) & Duncan
Doyle (Fortis).

NVTI Nieuwsbrief 7

IPA Ph.D. Defenses in 2006

Ricardo Javier Corin (UT, 12 januari), Analysis Models for Security Protocols. Promotor:
prof.dr. P.H. Hartel. Co-promotor: dr. S. Etalle. IPA-Dissertation Series 2006-02.

Eelco Dolstra (UU, 18 januari), The Purely Functional Software Deployment Model. Promotor:
prof.dr. S.D. Swierstra. Co-promotor: dr. E. Visser. IPA-Dissertation Series 2006-01.

Peter Verbaan (UU, 1 februari), The Computational Complexity of Evolving Systems. Promo-
tors: prof.dr. J. van Leeuwen, prof.dr. J. Wiedermann. IPA-Dissertation Series 2006-03.

Ka Lok Man and Ramon Schiffelers (TU/e, 7 februari), Formal Specification and Analysis
of Hybrid Systems. Promotors: prof.dr. J.C.M. Baeten, prof.dr.ir. J.E. Rooda. Co-promotors: dr.
M.A. Reniers, Dr. D.A. van Beek. IPA-Dissertation Series 2006-04.

Albert Jan Markvoort (TU/e, 14 maart 2006), Towards Hybrid Molecular Simulations. Pro-
motors: prof.dr. P.A.J. Hilbers, prof.dr. M.A.J. Michiels. Co-promotor: dr. R. Pino Plasencia.
IPA-Dissertation Series 2006-09.

Jeroen Ketema (VU, 20 maart 2006), Böhm-Like Trees for Rewriting. Promotor: prof.dr. J.W.
Klop. Co-promotors: dr. R.C. de Vrijer, dr. F. van Raamsdonk. IPA-Dissertation Series 2006-07.

Martijn Hendriks (RU, 4 april), Model Checking Timed Automata - Techniques and Applica-
tions. Promotor: prof.dr. F.W. Vaandrager. IPA-Dissertation Series 2006-06.

Marcel Kyas (UL, 4 april), Verifying OCL Specifications of UML Models: Tool Support and
Compositionality. Promotors: prof.dr. J.N. Kok, prof.dr. W.-P. de Roever. Co-promotor: dr. F.S.
de Boer. IPA-Dissertation Series 2006-05.

Cees-Bart Breunesse (RU, 24 april), On JML: topics in tool-assisted verification of JML pro-
grams. Promotor: prof.dr. B.P.F. Jacobs Co-promotor: dr.ir. E. Poll. IPA-Dissertation Series
2006-08.

Siegfried Nijssen (UL, 15 mei), Mining Structured Data. Promotor: prof.dr. J.N. Kok. Co-
promotor: dr. W.A. Kosters. IPA-Dissertation Series 2006-10.

Giovanni Russello (TU/e, 27 juni), Separation and Adaptation of Concerns in a Shared Data
Space. Promotors: prof.dr. M. van Steen, prof.dr. M. Rem. Co-promotor: dr. M.R.V. Chaudron.
IPA-Dissertation Series 2006-11.

Tomas Krilavicius (UT, 6 september), Hybrid Techniques for Hybrid Systems. Promotor:
prof.dr. H. Brinksma. Co-promotor: dr.ir. R. Langerak. IPA-Dissertation Series 2006-15.

Bahareh Badban (VU, 7 september), Verification Techniques for Extensions of Equality Logic.
Promotor: prof.dr. W.J. Fokkink. Co-promotor: dr. J.C. van de Pol. IPA-Dissertation Series
2006-13.

Ling Cheung (RU, 18 september), Reconciling Nondeterministic and Probabilistic Choices. Pro-
motor: prof.dr. F.W. Vaandrager. IPA-Dissertation Series 2006-12.

Arjan Mooij (TU/e, 2 October), Constructive Formal Methods and Protocol Standardization.
Promotor: prof.dr.ir. J.F. Groote. Co-promotor: dr. J.M.T. Romijn. IPA-Dissertation Series
2006-14.

Cas Cremers (TU/e, 6 november), Scyther - Semantics and Verification of Security Proto-
cols. Promotor: prof.dr. J.C.M. Baeten. Co-promotors: dr. S. Mauw, dr. E.P. de Vink. IPA-
Dissertation Series 2006-20.

Louis van Gool (TU/e, 27 november), Formalising Interface Specifications. Promotors: prof.dr.
J.C.M. Baeten, prof.dr. A. de Bruin. Co-promotor: dr. R. Kuiper. IPA-Dissertation Series 2006-
19.

Martijn Warnier (RU, 27 november), Language Based Security for Java and JML. Promotor:
prof.dr. B.P.F. Jacobs. Co-promotor: dr. M.D. Oostdijk. IPA-Dissertation Series 2006-16.

Biniam Gebremichael (RU, 11 december), Expressivity of Timed Automata Models. Promotor:
prof.dr. F.W. Vaandrager. IPA-Dissertation Series 2006-18.

8 NVTI Nieuwsbrief

IPA 2007-2012

In preparing for the next period, IPA reviewed its main research areas and the four focus areas
(Networked Embedded Systems, Security, Intelligent Algoriths, and Compositional Programming
Methods) for 2002 - 2006.

As before, the three main research areas for 2007 - 2012 will be Algorithms and Complexity,
Formal Methods, and Software Technology. During 2006, the descriptions of these areas were
updated (see www.win.tue.nl/ipa/about) to reflect developments in the field. In this process,
the area Software Technology was renamed into Software Technology & Engineering to better
reflect the wider range of research topics addressed by various research groups in IPA (particularly
in software renovation, software architecture, and software processes).

For the coming period five new focus areas within the scope of IPA were chosen, where we
expect important developments in the near future and want to stimulate collaboration:

• The future challenges of computing require new concepts that are no longer adequately
modeled by the classical Turing machine paradigm. In the focus area Beyond Turing we
want to explore these novel concepts and paradigms.

• Nowadays computer science plays a foundational role in the life sciences. In the focus area
Algorithms & models for life sciences we wish to apply algorithmic theory and formal models
to contribute to the understanding of biological processes, entities and phenomena.

• Systems with both continuous and discrete dynamics are becoming increasingly important
in many applications. In the focus area Hybrid systems we want to continue to contribute
to the confluence of systems and control theory and computer science in integrated methods
for modelling, simulation, analysis, and design of such systems.

• Model-driven software architectures are getting more and more popular both in industrial
and scientific communities. However, there are many open questions regarding (the use of)
models in this approach. In the focus area Model-driven software engineering we want to
study various fundamental aspects of the model-driven approach to software engineering.

• The quality of software is characterized in terms of a growing set of attributes (for instance
availability and modifiability in addition to functional requirements). In the focus area
Software analysis we want to make progress in the extraction of facts from source code and
their analysis, to obtain instruments for measuring the various quality attributes of software.

Activities in 2007

IPA is planning several activities for 2007, including the Lentedagen (April), the Basic Course
on Algorithms & Complexity (June, Eindhoven), and the Herfstdagen (November) which will be
dedicated to one of the new focus areas. More information on these events will appear on the
IPA-website as dates and locations for these events are confirmed.

Addresses

Visiting address Postal address

Technische Universiteit Eindhoven IPA, Fac. of Math. and Comp. Sci.
Main Building HG 7.22 Technische Universiteit Eindhoven
Den Dolech 2 P.O. Box 513
5612 AZ Eindhoven 5600 MB Eindhoven
The Netherlands The Netherlands

tel. (+31)-40-2474124 (IPA Secretariat)
fax (+31)-40-2475361
e-mail ipa@tue.nl
url www.win.tue.nl/ipa/

NVTI Nieuwsbrief 9

School for information and Knowledge Systems in 2006

Richard Starmans (UU)

Introduction
SIKS is the Dutch Research School for Information and Knowledge Systems. It was founded in 1996 by
researchers in the field of Artificial Intelligence, Databases & Information Systems and Software Engineering.
Its main concern is research and education in the field of information and computing sciences, more
particular in the area of information and knowledge systems. SIKS is an interuniversity research school that
comprises 12 research groups from 10 universities and CWI. Currently, nearly 400 researchers are active,
including over 190 Ph.D.-students. The Vrije Universiteit in Amsterdam is SIKS' administrative university, and
as off January 1 2006 Prof.dr. R.J. Wieringa (UT) is scientific director. The office of SIKS is located at Utrecht
University. SIKS received its first accreditation by KNAW in 1998 and was re-accreditated in June 2003 for
another period of 6 years. In 2006 the board of governors decided to apply for re-accreditation in 2009 again.

Activities
We here list the main activities (co-)organized or co-financed by SIKS. We distinguish basic courses,
advanced courses and other acitivities (including masterclasses, workshops, one-day seminars, conferences
and research colloquia)

Basic courses

“System modeling”, May 29-31, 2006, Landgoed Huize Bergen, Vught
Course directors: dr. P. van Eck (UT), dr. W.-J. van den Heuvel (UvT)

“Knowledge modeling”, May 31-June 02, 2006, Landgoed Huize Bergen, Vught
Course director: dr. B. Bredeweg (UVA)

“Information and Organisation”, September 25-27, 2006, Landgoed Huize Bergen, Vught
Course directors: dr. H. Weigand (UvT), prof.dr. ir. P. Grefen (TUE)

“Architectures for IKS” September 27-29, 2006, Landgoed Huize Bergen, Vught
Course director: prof. dr. E. Proper (RUN)

“Research methods and methodology for IKS", November, 20-21, 2006, Lunteren
Course directors: dr. H. Weigand (UvT), prof. dr. R. Wieringa (UT), prof.dr. H. Akkermans (VU)
prof. dr. J-J.Ch. Meyer (UU), dr. R. Starmans (UU)

Advanced courses

“Computational Intelligence”, April 03-04 2006, Landgoed Huize Bergen, Vught
Course directors: dr. T. Heskes (RUN)

“Summer course on Datamining”, July 03-07, 2006, Maastricht
Course directors: dr. E. Smirnov (UM), dr. J. Donkers (UM), Prof. dr. E.O. Postma (UM)

Other activities

• Theory-day 2006 of the NVTI, March 10, 2006, Utrecht
• Dutch Belgian Information Retrieval Workshop, March 13-14, 2006, Delft.
• SIKS Masterclass on Human-Computer Interaction, March 15, 2006, Amsterdam
• Workshop on Perceptual Cognition, April 20, 2006, Maastricht
• SIKS Masterclass "Requirements Engineering & Information Modeling”, May 30, 2006 Amsterdam
• Workshop on Data modeling, June 06, 2006, Enschede
• Agent Systems summer school, EASSS 2006, July 17-21, 2006, Annecy
• SIKS-conference on Enterprise Information Systems (EIS 2006), Sept 08, 2006, Utrecht
• BNAIC 2006, 05-06 October 2006, Namur
• Dutch-Belgian Database Day, November 15-16 2006, Brussel
• SIKS-IKAT Research colloquium: organized 6 times in Maastricht
• CABS-SIKS Research colloquium, organized 8 times in Delft en Utrecht

10 NVTI Nieuwsbrief

Promotions in 2006

In 2006 28 researchers successfully defended their Ph.D.-thesis and published their work in the
SIKS-dissertation Series.

2006-01
Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting
Promotores: Prof.dr.ir. P. W.P.J. Grefen (TUE), Prof. dr. ir. J.A. La Poutré (TUE/CWI)
Promotie: 02 February 2006

2006-02
Cristina Chisalita (VU)
Contextual issues in the design and use of information technology in organizations
Promotores: Prof.dr.G. van der Veer (VU), prof. dr. J.C. van Vliet (VU)
Promotie: 14 March 2006

2006-03
Noor Christoph (UVA)
The role of metacognitive skills in learning to solve problems
Promotor: Prof.dr.B.J. Wielinga (UVA)
Co-promotor: Dr. J. Sandberg (UVA)
Promotie: 21 April 2006

2006-04
Marta Sabou (VU)
Building Web Service Ontologies
Promotores: prof.dr. F.A.H. van Harmelen (VU), prof.dr. H. Stuckenschmidt (University of Mannheim,
Germany)
Promotie: 27 April 2006

2006-05
Cees Pierik (UU)
Validation Techniques for Object-Oriented Proof Outlines
Promotor: prof.dr. J.-J. Ch. Meyer (UU)
Co-promotor: dr. F.S. de Boer (UU/CWI)
Promotie: 03 May 2006

2006-06
Ziv Baida (VU)
Software-aided Service Bundling - Intelligent Methods & Tools for Graphical Service Modeling
Promotor: prof.dr. J.M. Akkermans (VU)
Co-promotor: dr. J. Gordijn (VU)
Promotie: 29 May 2006

2006-07
Marko Smiljanic (UT)
XML schema matching -- balancing efficiency and effectiveness by means of clustering
Promotor: Prof.dr. W. Jonker (UT and Philips Research)
Co-promotor: dr. M. van Keulen (UT)
Promotie: 21 April 2006

2006-08
Eelco Herder (UT)
Forward, Back and Home Again - Analyzing User Behavior on the Web
Promotor: Prof. dr. ir. A. Nijholt (UT)
Assistent-Promotor: Dr. E.M.A.G. van Dijk (UT)
Promotie: 13 April 2006

2006-09
Mohamed Wahdan (UM)
Automatic Formulation of the Auditor's Opinion

NVTI Nieuwsbrief 11

Promotores: Prof.dr. H.J. van den Herik (UM), Prof. E.H.J. Vaassen (UM)
Co-promotores: Prof. H.F. Ali(Rutherford University), Dr. P. Spronck (UM)
Promotie: 29 June 2006

2006-10
Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems
Promotor: Prof.dr. F.A.H. van Harmelen (VU)
Promotie: 09 June 2006

2006-11
Joeri van Ruth (UT)
Flattening Queries over Nested Data Types
Promotor: Prof.dr. P.M.G. Apers (UT)
Promotie: 02 June 2006

2006-12
Bert Bongers (VU)
Interactivation - Towards an e-cology of people, our technological environment, and the arts
Promotores: Prof. dr. G. C. van der Veer (VU), Prof. dr. J. C. van Vliet (VU)
Promotie: 04 July 2006

2006-13
Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information Exchanging Agents
Promotores: Prof.dr. J.-J. Ch. Meyer (UU), Prof.dr. C.L.M. Witteman (RUN)
Promotie: 18 September 2006

2006-14
Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign - towards a Theory of Requirements Change
Promotores: Prof. dr. G. C. van der Veer (VU), Prof. dr. J. C. van Vliet (VU)
Promotie: 09 October 2006

2006-15
Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain
Promotor: Prof.dr. A.P.J.M. Siebes (UU)
Promotie: 11 October 2006

2006-16
Carsten Riggelsen (UU)
Approximation Methods for Efficient Learning of Bayesian Networks
Promotor: Prof.dr. A.P.J.M. Siebes (UU)
Co-promotor: dr. A.J. Feelders (UU)
Promotie: 23 October 2006

2006-17
Stacey Nagata (UU)
User Assistance for Multitasking with Interruptions on a Mobile Device
Promotor: Prof.dr. J. van den Berg (UU), Prof.dr. M. Neerincx (TUD)
Co-promotor: dr. H. van Oostendorp (UU)
Promotie: 12 October 2006

2006-18
Valentin Zhizhkun (UVA)
Graph transformation for Natural Language Processing
Promotor: Prof.dr. M. de Rijke (UVA)
Promotie: 28 November 2006

2006-19
Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach
Promotor: Prof.dr. J.-J. Ch. Meyer (UU)
Co-promotores: dr. F.S. de Boer (CWI / LIACS / UU), dr. M. Dastani (UU)

12 NVTI Nieuwsbrief

Promotie: 25 October 2006

2006-20
Marina Velikova (UvT)
Monotone models for prediction in data mining
Promotores: Prof. dr. ir. H.A.M. Daniels (UvT / EUR), Prof. dr. J.P.C. Kleijnen (UvT)
Co-promotores: dr. A.J. Feelders (UU)
Promotie: 13 November 2006

2006-21
Bas van Gils (RUN)
Aptness on the Web
Promotores: Prof. dr. H.A. Proper (RUN), Prof. dr. ir. Th.P. van der Weide (RUN)
Promotie: 08 December 2006

2006-22
Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation
Promotor: Prof. dr. ir. Th.P. van der Weide (RUN)
Co-promotores: dr. P. van Bommel (RUN)
Promotie: 13 December 2006

2006-23
Ion Juvina (UU)
Development of Cognitive Model for Navigating on the Web
Promotor: Prof. Dr. J. van den Berg (UU)
Co-promotores: dr. H. van Oostendorp (UU)
Promotie: 19 October 2006

2006-24
Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources
Promotores: prof dr. A.Th. Schreiber (VU), prof dr. B.J. Wielinga (UVA)
Co-promotor: dr. M. Worring (UVA)
Promotie: 16 November 2006

2006-25
Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary MCMC
Promotor: Prof.dr.ir. L. C. van der Gaag (UU)
Co-promotor: dr.ir. D. Thierens (UU)
Promotie:27 November 2006

2006-26
Vojkan Mihajlovic (UT)
Score Region Algebra: A Flexible Framework for Structured Information Retrieval
Promotor: Prof.dr. P.M.G. Apers (UT)
Co-promotor: Dr. D. Hiemstra (UT)
Promotie: 07 December 2006

2006-27
Stefano Bocconi (CWI)
Vox Populi: generating video documentaries from semantically annotated media repositories
Promotor: Prof. dr. L. Hardman (CWI/TUE)
Co-promotor: dr. F. Nack (CWI)
Promotie: 30 November 2006

2006-28
Borkur Sigurbjornsson (UVA)
Focused Information Access using XML Element Retrieval
Promotor: Prof.dr. M. de Rijke (UVA)
Co-promotor: dr. ir. J. Kamps (UVA)
Promotie: 14 December 2006

NVTI Nieuwsbrief 13

Adaptive Agents in Complex Negotiation Games
Valentin Robu Koye Somefun Han La Poutré

CWI, Dutch National Research Center for Mathematics and Computer Science
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

email:
�
robu , koye , hlp � @cwi.nl

Abstract
In this article, we focus on games in multi-agent systems. We first give a brief positioning and de-

scription of the area of adaptive agents, games, and multi-agent systems. We then consider complex
negotiation games, in particular negotiation over many issues with inter-dependent valuations, and we
present our recent results from [19]. We use ideas inspired by graph theory and probabilistic influence
networks to derive efficient heuristics for negotiations about multiple issues. We explicitly model and
utilize the underlying graphical structure of complex utility functions. We experimentally analyse —
under relatively weak assumptions with respect to the structure of the utility functions – the developed
approach. Our approach is applicable to domains where reaching a (Pareto) efficient outcome in a lim-
ited amount of negotiation steps is important. Furthermore, unlike other solutions for high-dimensional
negotiations, the proposed approach does not require a mediator.

1 Introduction
1.1 Multi-agent systems, games, and adaptivity
Multi-agent systems have become an important paradigm in computer science. Such systems allow not
only for distributed computation, but can represent autonomous actors as well. Different agents can thus
represent different parties, with their own information, knowledge, strategies, and objectives. At the same
time, agents can communicate and interact, in order to solve problems, to carry out tasks, or to make
agreements.

The concept of multi-agent systems is coming from other scientific disciplines like economics and
social sciences, as well as from daily life. In daily life, one can think of e.g. an insurance agent, a broker,
a sales representative, and so on. In economics and social sciences, such agents are typically the actors or
players in a collective system, representing persons, companies, governmental institutions, or organisations.
The interaction between these parties is usually formalized by games, often as part of game theory. Well
known instances are e.g. auctions, negotiations, social dilemmas (prisoner’s dilemma), or social choice
theory (voting systems).

Although a substantial amount of game theory exists, this is often not enough to design software agents
that act in situations that can be represented in some game form. Reasons for this can be various. One
issue is the computational or communication complexity that is needed to compute a solution. Another
one is the inherent lack of information that agents have (incomplete information), especially in settings
with restricted information access, unkown utility functions and strategies of competing selfish agents, or
environments with a high complexity of relevant information. Both issues are instances of the theoretical
concept of bounded rationality [1, 21]. Yet another one is that in many situations (like in repeated games,
negotiation settings, or open uncertain environments), only a limited amount of game theory is available.
For instance, central concepts occurring in one-shot games appear to quickly become very complicated or
even intractable in repeated games: examples are notions like truth-revelation or dominant strategies in
(auction) games, for which the theory on one-shot games does not easily transfer to repeated games.

14 NVTI Nieuwsbrief

For all such cases, substantial further research has to be performed to obtain software agents that can
play in such games. For, the games occurring in realistic multi-agent systems are often not in the same
stylized fashion as studied before in game theory. Often, precise game models have to be designed that cor-
rectly represent the game settings and the additional environmental constraints coming from broad problem
areas, such as logistics or electronic commerce. Such game models then allow for fundamental research.
Often, this then further comes down to algorithm design, information and knowledge representation, and
adaptivity of agents (e.g. by adaptive algorithms) . Depending on the type and complexity of the problem,
the analysis can then be (partly) mathematical or (partly) experimental, by means of controlled computer
experiments.

In this article, we present some recent research results in this area, which we published in [19, 20]. We
focus on the complex multi-issue negotiations and utility graphs, where we especially deal with [19].

1.2 Complex Multi-Issue Negotiations and Utility Graphs
Automated bilateral negotiation forms an important type of interaction in agent based systems for electronic
commerce [15]. It allows seller and customer to determine the terms and content of the trade iteratively
and bilaterally. Consequently, deals may be highly customized (especially for complex goods or services)
and highly adaptable to changing circumstances. Moreover, by automating the negotiation, the potentially
time-consuming process is delegated to autonomous software agents who conduct the actual negotiation
on behalf of their owners.

In this paper, we consider the problem of a seller agent negotiating bilaterally with a customer about
selecting a subset from a collection of goods or services, viz. the bundle, together with a price for that
bundle. Thus, the bundle configuration — an array of bits, representing the presence or absence of each of
the shop’s goods and services in the bundle — together with a price for the bundle, form the negotiation
issues. Like the work of [11, 12, 10, 23, 5], the techniques developed in this paper try to benefit from the
so-called win-win opportunities, by finding mutually beneficial alternative bundles during negotiations.

The methods proposed in Faratin et al. [10], Coehoorn and Jennings [5] are geared towards finding win-
win opportunities through modeling the preferences of the negotiation partner, for issues with independent
valuations. This paper follows a similar approach; we consider interdependencies between issues, however,
which make the problem considerably harder. In order to model such complex utility interdependencies
between items, we introduce the novel concept of utility graphs.

Utility graphs build on the idea introduced in Chajewska and Koller [4] and Bacchus and Grove [3] that
highly nonlinear utility functions, which are not decomposable in sub-utilities of individual items (such as
in the seminal work of Raiffa [17]), may be decomposable in sub-utilities of clusters of inter-related items.
They mirror the graphical models developed in (Bayesian) inference theory (cf. [13, 16]). Graphical models
have been shown to be a powerful formalism for modeling decisions and preferences of other agents (see
Lauritzen [13] for an overview). The idea behind using utility graphs in a multi-issue bargaining setting
is to provide the seller with a formalism that can be used to explore the exponentially large bundle space,
efficiently. In this paper, we show how utility graphs can be used to model an opponent’s (i.e. customer’s)
preferences. Moreover, we also propose an updating procedure to obtain approximations of the customer’s
utility graph indirectly, by only observing his counter-offers during the negotiation.

An important benefit of using utility graphs in this setting is scalability: the problem becomes harder
for larger number of items only if the underlying preference function becomes more complex as well.
Graphical models (such as the one proposed in this paper), exploit the decomposable structure of utility
functions, hence enabling more efficient search of the contract space.

At the start of a negotiation process, the seller’s approximation of the customer’s utility graph represents
some prior information about the maximal structure of the utility space to be explored. This prior informa-
tion could be obtained through a history of past negotiations or the input of domain experts. (An important
advantage of a utility graphs is that they can handle both qualitative and quantitative prior information.)
After every (counter) offer of the customer, this approximation is refined. Conducted computer experi-
ments show that — by using only a fairly weak assumption on the maximal structure of customers’ utility
functions — the updating procedure enables the seller to suggest offers that closely approximate Pareto ef-

2

NVTI Nieuwsbrief 15

ficiency 1. Moreover, efficient outcomes are reached after relatively few negotiation rounds, which enables
our approach to be used in applications where time constraints or the impatience of buyers are limiting
factors.

The rest of this paper is organized as follows. Section 2 presents the negotiation setting: it defines the
efficiency criteria, the negotiation protocol and the top-level outline of the negotiation algorithm. Section
3 defines the concept of utility graphs, it describes how such graphs can be used to model complex utility
functions and to learn the preferences of the opponent in negotiation settings. Section 4 presents the set-up
and results from the experiments performed to validate the model, while Section 5 concludes the paper
with a discussion of related work and outlines the contributions of this paper.

2 The negotiation setting
We consider a buyer and seller who negotiate bilaterally over a set of � binary-valued issues or items, and
one continuous issue, the price. Henceforth, we will refer to the binary-valued issues as items and to subsets
formed with these items as bundles. Negotiations are conducted in an alternating exchange of offers and
counter offers. The offers and counter offers contain a � -dimensional vector of � ’s and � ’s representing an
instantiation of the � items, plus a price offered/asked for this bundle.

The utility (measured in terms of monetary value) a buyer assigns to any bundle of items is given by a
complex (nonlinear) function that takes into account interdependencies between various items. The seller’s
utility for a bundle (measured in net monetary value) is the difference between the price received for a
bundle and the costs incurred for providing a bundle. These costs are additive: i.e., the bundle cost equals
the cost of offering the items individually. Both the buyer’s utility and the seller’s cost represent private
information, which remains undisclosed before or during the negotiation. Therefore, the negotiation setting
can be describes as double-sided incomplete information.

2.1 Net Utility functions of Buyer and Seller
Let ��� �	��
������������ � denote the collection of � items a seller and buyer negotiate over. Each item���

takes on either the value � or � : � (�) means that the item is (not) purchased. Thus � has the domain���	��� ����� � � � ��� � (so there are � � possible bundles). The � -dimensional vector ��! ���	��� ��� denotes an
instantiation of these � items. In our approach, the utilities assigned to different outcomes (combinations)
are represented by monetary units, rather than values between 0 and 1. We found this choice more natural
for the e-commerce scenarios we consider. The utility function "$# ���	��� ���&%')(specifies the monetary
value a buyer assigns to all (� �) possible outcomes. Due to interdependencies between various items the
function " is highly nonlinear. The buyer’s net utility (i.e. net monetary value) for purchasing a bundle ��
for a price * , denoted by �+"-, � �� � *-� , is defined as follows:

�+"., � �� � *+�/�0" � �� �213* � (1)

That is, �+"-, � �� � *+� is the difference between the monetary value for acquiring (consuming) bundle �� minus
the price * paid for purchasing bundle �� . The net monetary value of the seller is computed as:

�+"-4 � �� � *-�/�5*61�7 ��8�9�8:� �� � (2)

Thus, the seller’s net monetary value for the sales of a bundle �� for a price * is just the price minus the cost
for selling the items. Currently, the seller has an additive cost structure: i.e., the bundle costs 7 ��8�9�8;� �� �
equals the sum of the cost incurred when selling the items individually.

2.2 Using gains from trade as efficiency criteria
The most widely used performance criteria in multi-attribute negotiations is Pareto efficiency. Raiffa [17]
provides a method to compute Pareto-efficient outcomes in the case utility functions of both parties are

1A deal is Pareto efficient whenever no party can be made better off without making the other one worse off.

3

16 NVTI Nieuwsbrief

normalized between 0 and 1. In our model, utilities are represented in monetary units instead of mappings
between 0 and 1. Consequently, it is more insightful to compute the gains from trade that can result from
exchanging a certain bundle of items �� . The gains from trade are defined as:

<>= � �� �/�0" � �� �21?7 ��8�9@� �� � � (3)

where " � �� � denotes the buyers monetary value for �� . The notion of gains from trade is well founded in
the economic literature on trade (c.f. [2]). Moreover, for the above setting (where utility is expressed in
monetary units) the set of bundles maximizing the gains from trade can be proven to be the same as the set
of Pareto-efficient bundles (c.f. [23]). Intuitively, the gains from trade can be seen as the maximal size of
joint gains, which can be achieved through negotiation, while the continuous attribute, the price represents
different ways to divide these joint gains.

2.3 Top-level outline of the negotiation algorithm
The negotiation, in our model, follows an alternating offers protocol. At each negotiation step, each party
(buyer/seller) makes an offer which contains an instantiation of 0/1 for all items in the negotiation set
(denoting whether they are/are not included in the proposed bundle), as well as a price for this bundle. The
decision process for each party, at each negotiation step, is composed of 3 inter-related parts: (1) take into
account the previous offer made by the other party, (2) compute the contents (i.e. item configuration) of
the next bundle to be proposed, and (3) compute the price to be proposed for this bundle.

Alg. 1 gives an outline of the algorithm the seller uses in each negotiation step. On the buyer’s side,
the followed steps mirror Alg.1 with the notably difference that the buyer does not try to estimate or reach
the highest gains from trade, but selects the bundle that optimizes only his own expected net utility (i.e.,
he is entirely selfish). Based on the ongoing negotiation process he can update this choice, however. In
this model, the burden of exploring the huge bundle space and recommending jointly profitable solutions is
therefore passed to the seller, who must solve it by modeling the preferences of the buyer. This is a reason-
able model in cases where an electronic merchant negotiates with different buyers in succession and tries to
optimize both his own profits and buyer satisfaction (essential for building up a durable client relationship,
which would generate repeated business). Furthermore, in e-commerce domains it is reasonable to assume
that electronic merchants are more knowledgeable than individual buyers.

Algorithm 1 Top level algorithm used by the seller
Denote by � �� , � *A,B� the previous offer of the buyer and by � �� 4 � *.4@� the previous offer of the seller.
� . If �� ,C� �� 4 (configuration is agreed) and *+4D13*A,!EGF!* (difference in ask and offer prices is under some
maximum acceptable threshold), then Success.� . Otherwise:H . Update the estimated utility graph of the buyer based on his past bid �� ,JILKMONP . Compute (one of) the bundles ���Q with the highest gains from tradeR . Compute the price to be proposed for ���Q such that it represents a linear time concession from my
previous offerS . Propose this bundle and price to the buyer

In our model the seller starts the negotiation by posting an ask price for each item. This price reflects
the maximum profit the seller expects to make by selling that item (i.e. the ask price reflects his maximal
aspiration level). The buyer also has a maximal aspiration level, which reflects the maximum discount he
expects to get. The discount the buyer will actually get for a bundle depends on the content of that bundle
and on the negotiation process itself.

The seller’s approach is to search for a bundle that has the maximum gains from trade, since in this way
he increases the joint gains: the only way he can continue to offer a better discount, but also increase his own
profits, while the Buyer is strictly selfish and will always propose a bundle that increases his own (expected)
utility. Regarding price concessions, both the buyer and the seller compute, for the current proposed
bundle their current aspiration level and then make a time-dependent price concession with respect to
that aspiration level.

4

NVTI Nieuwsbrief 17

For consistency, all experimental results reported in this paper refer to the linear, time-dependent con-
cession case. However other time-dependent concession strategies usually employed in bilateral nego-
tiations (such as hard-headed, boulware [8]) have been implemented and tested, with consistently good
results. We note that the accuracy of the bundle predicted to have the highest gains from trade (step 3 and
4 in Alg. 1) does not significantly depend on the price concession strategy, because we made the explicit
modeling choice that the concession strategy concerns only the pricing (step 5 of Alg. 1 above), not the
exploration of the bundle content itself (steps 3 and 4 of Alg. 1). We acknowledge, however, that if the
concession strategy were directly embedded in the opponent-learning mechanism (performed using the
utility graph), the consistency of our experimental results may be effected. Finally, we model time pressure
and/or buyer impatience through a break-off probability: at each step there is a small risk of breakdown (a
value of 2% was used in the simulations).

3 Using graphs to model utility functions
3.1 Decomposable Utility Functions
Recall that we consider a buyer who negotiates with a seller over a bundle of � items, denoted by �T��	��
������������ � . Each item

���
takes on either the value � or � : � (�) means that the item is (not) purchased.

The utility function "U# ���	�V� �W�W%'X(specifies the monetary value a buyer assigns to each of the � �
possible bundles (���	�V� �W�/� � � � ��� �).

In traditional multi-attribute utility theory, " would be decomposable as the sum of utilities over the
individual issues (items) [17]. However, in this paper we follow the previous work of [4] by relaxing this
assumption; they consider the case where " is decomposable in sub-clusters of individual items such that" is equal to the sum of the sub-utilities of different clusters.

Definition 1 Let 7 be a set of clusters of items 7
�������� 7&N (with 7 �ZY �). We say that a utility function
is factored according to 7 if there exists functions " � # �[�	�V� 7 � �\%']((^>�_� ��������a` and ���	��� 7 � �b�� � � ���dc eAfgc) such that " � �� �h�ji � " � � �k � � where �� is the assignment to the variables in � and �k � is the
assignment to the variables in 7 � , induced from the assignment �� . We call the functions " � sub-utility
functions.

The factorization of a decomposable utility function is not unique. In this paper, we use the following
factorization, which is a relatively natural choice within the context of negotiation. Single-item clusters
(l 7 � lC�m�) represent the individual value of purchasing an item, regardless of whether other items are
present in the same bundle. Clusters with more than one element (l 7 � lonp�) represent the synergy effect
of buying two or more items; these synergy effects are positive for complementary items and negative for
substitutable ones. eams that we allow direct synergy effects between up to 4 items. The factorization
defined above can be represented as an undirected graph

< � �rq �as � , where the vertices q represent the
set of items

�
under negotiation. A vertex between two nodes (items) ^ �Ot q is present in this graph if

and only if there is some cluster 7Zu that contains both
��

and
�Bv

. We will henceforth call such a graph
<

a
utility graph 2.

Example 1 Let �w� �	��
���	x����y��a�@z � and 7{� �:�	��
 � ����	x � ��	��
���	x � �@�	�	xL�a�y � �@�	�	x�����z �:� such that " � is the sub-utility function associated with cluster ^ (^/�w� �����@� R).
Then the utility of purchasing, for instance, items

�;
��a�	x��
and

�y
(i.e., �� � � � � � � � � �|�) can be computed as

follows: " ��� � � � � � � �|���}�G"
 � �	�L~�" x � �L�L~�" y ��� � � �	���L~�" z ��� � � �L��� , where we use the fact that "+� ��� � � �|���/�G�
(synergy effect only occur when two or more items are purchased). The utility graph of this factorization is
depicted in Fig. 1.

To give a numerical example, suppose: "
 � �L������� , " x � �	����� R , " y ��� � � �L�����)1�� R , " z ��� � � �	���� P � "-� ��� � � �	���C��� P . Moreover, all item costs are equal to $2: i.e., k � �;
 ��� k � �	x ��� k � �y ��� k � ��z ���w��� .
In this case the bundle with the maximum gains from trade (i.e. the bundle denoted by ���Q in Alg. 1) is:

2The concept of cluster defined for utility graphs can be seen as corresponding to the concept of cliques in probabilistic networks.
However, for consistency, we use only the term cluster throughout this paper.

5

18 NVTI Nieuwsbrief

(0, 1, 1, 1), which has the net monetary value of $5+$4+$4 - 3*$2 = $7. From this simple example we
can already highlight an important problem. The assignments for items

�|

and

�y��a�@z
influence each other

indirectly, through the assignment for
�Lx

(although there are no direct links from
�:

to
�y��a�@z

). This feature
is exploited by our decomposition algorithm.

I3

I4

I2I1

+

+

-

Figure 1: The utility graph that corresponds to the factorization according to 7 in Example 1. The ~ and1 signs on the edges indicate whether the synergy effect are positive or negative.

At the computational level, each cluster is represented by a joint utility table, which assigns a utility
value for all combinations of instantiations with 0/1 of items in that cluster (this is similar in concept to the
joint probability tables, used to represent inter-dependent variables in probabilistic networks). Therefore,
the cost of this utility representation is then exponential in the number of items in the cluster. For this
reason, we limit the maximum size of any cluster to 4. However, this does not mean that the maximum size
of the inter-dependencies is limited to 4 – it can be arbitrarily large. This is because one item can simulta-
neously belong to several clusters, so when deciding whether to include it or not in the optimal bundle (see
section 3.3), the utility values in more than one table need to be taken into account. There is also a second,
more fundamental reason to limit the maximum cluster size, i.e. with higher-order interdependencies, the
decomposition algorithm on which our method is based is not guaranteed to produce a satisfactory partition
(Section 3.3 gives a more precise description of this issue).

3.2 The maximal interdependency graph
As shown in the previous section, we assume that the buyer’s utilities can be modeled as a graph. The
structure of this graph, as well as the sub-utilities corresponding to different clusters constitute private
information which is not revealed during the negotiation.

However, the seller does have some prior information to guide his opponent modeling. He starts the
negotiation by having a maximal item inter-dependence graph of all possible inter-dependencies between
the issues (items) which can be present in a given domain. The utility graphs of buyers form subgraphs of
this graph. Note that this assumption says nothing about the weights or values of the sub-utility functions,
so the negotiation is still with double-sided incomplete information. Furthermore, it does not mean that the
seller has to know the exact structure of the utility graph of the buyer. For example, suppose two issues
are assumed substitutable by the seller, so the utility of the combination containing both items is lower
than the sums of utilities for individual items. If the buyer signals (through his bids) that he is willing to
accept bundles containing both items, the seller will adjust the weight of this relation (i.e. adjust the values
for the relevant cluster sub-utility) towards the sum of utilities for individual items. Conceptually, this is
equivalent to removing the edge from the graph (which means they are no longer assumed substitutable).

The presence of this graph helps to greatly reduce the complexity of the search space on the side of the
seller. The structural information contained in such a graph can be obtained either from a history of past
negotiations or elicited from human experts. Note that in most domains it is reasonable to assume that the
seller does know something about the goods he is selling. For example, if he is selling online pay-per-view
journal articles, then articles within the same category (or with the same author) can be potentially related
(though not guaranteed to be related for every buyer).

6

NVTI Nieuwsbrief 19

Figure 2: Utility graph where the vertices
�	�|� � ���d� � �a�|� H ���d� P ��� k � and

�	� � � �a� � � ��� � H ��� k � form the two
cliques and corresponding subgraphs of �< . Moreover,

�	�	� � forms the only cutest.

3.3 Selecting the best counter offer
A problem which the seller faces at each negotiation step (see Alg. 1, step 2) is to choose a bundle ���Q
which has the highest gains from trade of the � � bundles. More formally stated: ��@Q � �|`	� � �;�+�, � �<�= � �� ���/��|`	� � �|� �, � �" � �� ��1�7 ��8�9@� �� ��� . Note that in the above definition, we use the notations �<�= and �" instead of<>=

and " , since the seller does not know the true utility value of the buyer. He only has an estimation of
it, which is updated after receiving a (counter) offer.

A straight-forward, brute-force solution to determine ���Q is to generate all bundles �� and select one which
has the highest (estimated) gains from trade. Since this involves � � steps at every iteration, it is clearly not
feasible for large � , so a heuristic is needed to reduce this search space.

Suppose the utility graph is decomposable into two or more completely disjoint parts (no overlapping
vertices). We can then compute an optimal sub-bundle for each of the parts and merge them. However, for
the more general case we still need a method for reducing the complexity of the search, when the original
graph (or a large sub-component of it) is not decomposable in such a straight-forward way. We do this by
applying ideas of the tree-decomposition theory to the utility graph �< � � �q � �s � .

Informally, a tree decomposition of a graph is a family of small, not necessarily disjoint, subgraphs�<
��������� �< u (for some � ��), the union of which makes up the initial graph. Associated with a tree de-
composition �<
�������� �< u is a collection of cutsets: a cutset is a subset of vertices that belong simultaneously
to the same two subgraphs. (See [18] for a more formal discussion of tree decomposition algorithms).

Example 2 Figure 2 depicts such a decomposition. The vertices
��d� � ���d� � �a�|� H ���d� P �a� k � and

�	� � � ��� � � ��� � H �a� k �
form the two cliques and corresponding subgraphs of �< . There are only two subgraphs therefore there is
only � cutset;

�	�
forms this cutest because it is the only vertex that lies in both subgraphs.

In the conducted experiments, cutsets contain at most 1 or 2 vertices. This is because, for any graph,
polynomial-time algorithms exist for decomposing a graph according to cutsets of size 1 or 2, provided
that the given graph can be decomposed in cutsets of size maximum 2 (cf. [18] for an overview). For
the algorithm presented below, we do not need to decompose the whole graph, however. It suffices to
decompose the graph at enough points to reduce its complexity. This means that the largest sub-component
of vertices left (i.e. which is not or cannot be decomposed any further) has a manageable size to allow
exhaustive search.

Alg. 2 generates all possible combinations only for items that overlap between subgraphs (i.e. cutset
items). Then, for all subgraphs it chooses the sub-combination that represents a local maximum for the
gains from trade function in the considered subgraph, but subject to the constraint that the items that
belong to more than one subgraph (i.e. cutset items) have the same values in all subgraphs. Finally, the
best overall combination is chosen as a maximum of combinations of local maximums achieved for all
possible instantiations for cutset vertices (items).

7

20 NVTI Nieuwsbrief

Algorithm 2 Algorithm returns ��@Q , a bundle with the highest gains from trade (i.e., ���Q
argmax

�,��:���������o� �<�= � �� �)
�<
 � �rq
���s>
 � �������� �< u�� �rq u ��s u:� and the union of all cutsets � Y q are given; �<>= � # �[�	�V�rq � �\%'(denotes the predicted gains from trade resulting from the sales of a subset of the items in

< �
; andq ��� t: ¡� � � ^ � � �������� �2� denote the reference to the item in � that corresponds to the

td¢¤£
and ^ ¢¤£ vertices inq � and � , respectively.

� . ¥¦#§�©¨ // ¥ will contain � -dimensional vectors� . For all �8 �[�	�V� ��� �H . Initialize �� // �� is a � -dimensional vectorP . For (�>ª�^Dª0�) �R . //Get max gains from trade of
< �

consistent with �8S . �« Q� argmax �¬ �:�������� f � �
<�= � � �� �� . s.t. �� �¡® �/� �8:�¤� � if q ��� ® �¯� � �

for some �>ª ® ª°l q � l and �>ª � ª°l �!l± . For (�\ª t ª°l q � l) �� �rq �a� t: �D#§� �« Q� � t �² . �	¥T#§�0¥´³ ��
�� . � return �� Q argmax �¬ ��µ �<>= � �� �

It can be shown that Algorithm 2 produces equivalent results to computing the bundle with the max-
imum gains from trade the straight-forward way, by generating all possible bundles. However, for large
graph structures it is considerably faster (in fact the direct method is too slow to work in practice for large
graph structures).

Example 3 Consider the graph in Figure 2. Generating all bundle combinations and testing them takes�¶	· � ·+¸ steps. Our algorithm generates all possible combinations only for cutset 7 , then computes optimal
sub-bundles for subgraphs ¹ and � for each combination of 7 and merges them. This requires only� � � ��¶Z~5��¸L� steps. Since k in our case is of size 1 or 2, while * and º can be arbitrarily large, the decrease
in the number of steps is exponential.

More generally, suppose the decomposition of a utility graph leads to � cutset nodes (l �!l|�U�) and Max q
denotes the number of vertices of the subgraph with the largest number of vertices. The complexity of
Algorithm 2 is then » � � u ·½¼W¾ ¬ � (proofs are omitted due to lack of space).

3.4 Updating Sub-utility Functions
The search method described in Section 3.3 works on the utility graph �< , and corresponding sub-utility
functions �" � (^��¿� �������� l;�7�l , where �7 denotes the set of clusters). They represent the best model of the
opponent (i.e. buyer) that the seller has so far. After receiving a counter offer from the buyer, he will update
this model. More precisely, he will update the sub-utility functions. In this Section, we will discuss the
rule for updating these sub-utility functions.

The learning algorithm determines, for all �7 � �7 , which combination in �7 � was asked by the buyer
at the last iteration (where there are � c eAfOc possible combinations). Then it increases the expected monetary
value of the buyer for that combination and degrades the other combinations in the cluster. Intuitively, the
idea is to strengthen a link between vertices (represented by the corresponding sub-utility value) whenever
a buyer indeed expresses an interest in purchasing the items corresponding to the vertices; otherwise the
link is weakened. Algorithm 3 gives the actual updating rules.

Example 4 Suppose we have the cluster 7 � � �	�y��a� � �a�À � (for a ^ � � �����@� l 7�l �). The buyer’s last offer
contains the combination

�	y �¯� , � ���w� , and
�À �w� . Then the expected buyer utility for purchasing itemR and S is increased: i.e., " � ��� � � � � �	���Á�Â" � ��� � � � � �	����Ã � �!~©Ä � ^g��� . The expected utilities for all other

combinations in
� � � ���Åc e f c (namely " � � � � � � �|� � " � � � � � � �L� � " � � � � � � �|� , etc.) are decreased.

8

NVTI Nieuwsbrief 21

Algorithm 3 Algorithm for updating sub-utility functions
The seller’s and buyer’s last offer contain the binary assignments �� 4 and �� , to the variables in � ; moreover
�k �¡Æ 4 and �k �¡Æ , denote the assignments to the items in �7 � , induced by �� 4 and �� , (i.e. �k �¡Æ 4 and �k �¡Æ , are sub-arrays
of �� 4 and �� ,).
� . For (�\ª�^�ª°l:�7�l) �� . if �k �¡Æ 4bÇ� �k �¡Æ , �H . " � � �k �JÆ ,B��#§�0" � � �k �¡Æ ,B�oÃ � ��~�Ä � �P . For all �k � � � ���dc e f cLÈ � k �¡Æ ,@�R . " � � �k ��#§�0" � � �k �oÃ � ��1�Ä � ^g���a�:�

Parameter Ä � ^g� in Algorithm 3 defines how much weight should be given to the request from the buyer’s
last bid, in each cluster. A higher Ä � ^�� mean that the seller is more likely to give in to buyer’s preferences
for a cluster. A straightforward choice would be to assign the same Ä to all clusters. The seller would then
only take into account the buyer’s preferences. However, he should also take into account the expected
gains from trade of a cluster, which also depend on his costs (unknown to the buyer). We therefore define
a factor called the Gains from Trade Importance Ratio (GTR) as:

<�=ZÉ � ^��/�
<>= � � �k �¡Æ ,B���<>= � �� ,�� (4)

for all ^/�Ê� �������� l 7�l . In the above equation, �� , denotes the seller’s last offer containing the assignment �� ,
to the variables in � and k �¡Æ , denotes the assignment to the variables in 7 � , induced by �� , .

Intuitively, this ratio provides a measure of the cluster’s importance weight, by comparing the gains
which can be obtained in this cluster to the gains for the whole bundle. The measure can be compared to
the inverse of total number of clusters �LËÌl 7�l , for the purpose of fine-tuning the alpha parameter for each
cluster (although the clusters vary in size in the conducted experiments from 1-4 items, the above ratio
still provides a useful heuristic). The cluster-specific Ä is then computed as the sum between a fixed and
variable component (computed by a sigmoid function): i.e.,

Ä � ^g�/�¯Ä}Í � ¬ MgÎC~ÏÄoÐ ¾ NCÃ �
�D~ÏÑ�Ò Q �ÔÓ+Õ+Ö×� � �JØ
�Ù c e�c �Ú� (5)

for all ^!�Û� �������� l 7�l . Here the parameter Ü is a positive value, which gives a measure of how steep the
sigmoid function is. After conducting a number of experiments, we observed that transforming the function
into a simpler step function (by assigning Ü¯'�Ý) produces reasonably good experimental results. The
values assigned to the alphas in the conducted experiments are Ä�Í � ¬ MOÎ>�G� � � and Ä½Ð ¾ N��G� � H .The rationale behind the above formula is the following: if a cluster has a high importance for the
seller (i.e. if

<>=ZÉ � ^g�&n©�LËÌl 7�l), then the concession made for this particular cluster will be small (equal toÄ}Í � ¬ MOÎ). Intuitively, this means that for this cluster, the costs of the seller are low, so the the seller should
keep insisting more on offering his own values for the items in this cluster for longer, since he knows he
can offer them cheaper (the buyer does not know this, because he does not know the cost structure of the
seller). For clusters with relatively low gains from trade (i.e. if

<�=ZÉ � ^��3E��LËÌl 7�l), there is not much
difference between the offer of the buyer and that of the seller - therefore the seller can concede towards
the buyer’s offer without much perceived utility loss.

We note that our updating rule implicitly entails that the seller uses a monotonic concession strategy,
because in all clusters at least a small, non-negative concession Ä�Í � ¬ MgÎ is made towards the buyer’s offer.
We made this choice since it assures that our algorithm guarantees convergence (i.e configuration agree-
ment) within a limited number of negotiation steps (although how efficient this agreement is depends on
the tuning of parameters).

We also note that our update model is geared to a particular class of buyer strategies, one in which the
buyer will make an overall time-dependent concession at each step on either configuration or price. We can
best exemplify this through the simplest strategy of this class: the case in which the buyer is “hard-headed”

9

22 NVTI Nieuwsbrief

about the configuration, by insisting on her own values for all the items under negotiation, though he/she is
willing to concede on the price. In this case, the seller will keep trying to offer the buyer other items, but
will insist more on the items for which his costs are low. However, eventually she will concede by agreeing
to the configuration asked (but she can still extract a considerable concession on the price).

4 Experimental Analysis
4.1 Experimental set-up
There are several dimensions, which we want to test in our model:
Þ The distance to Pareto-efficiency of the outcome reached (measured, in our case, as the average

percentage from the maximum possible gains from trade) as well as the robustness of this result to
large variations in buyer and seller profiles.

Þ The time taken to reach a solution, measured as the number of negotiation steps.

We test our model in a negotiation over 50 binary-valued issues. The maximal preference graph, which
the seller considers as possible, includes 28 clusters representing the direct synergy between items (either
positive for complementarity or negative for substitutability effects): 4 of them contain 4 items each, 13 of
them 3 items, 6 of them 2 items and 3 only 1 item. It is important to emphasize that in our representation,
each cluster is represented through a utility table with one entry for all sub-combinations in the cluster
(therefore of size �Ìc e�c , where l 7�l is the number of nodes per cluster). So, for example, for a cluster of size
3, we implicitly consider all its possible sub-clusters of size 2 and 1.

On the seller side, the cost of each of the � items is normally distributed according to ß �¤à � �a4 ¢ ��á.� �a4 ¢ � .
On the buyer side, the value of each of � individual items is normally distributed according to ß �¤à}â ¾ �ã� 4 ��á â ¾ �ã� 4@� .Moreover, the synergy effects between subsets in each of the above 11 (non-singleton clusters) is normally
distributed according to ß � � � � x á 4OK � � , where � denotes the number of items in the subset.

To somewhat limit the number of parameters, we set
á � á+� ��4 ¢ 4\� á â ¾ �Ô� 4\� á 4rK � . The parameter

á
captures the problem of finding Pareto-efficient solution very, nicely: the higher

á
the higher the likelihood

of complementarity and substitutability effects, hence the higher the likelihood of non-linearity, in the
problem.

The mean of the cost distribution for each item à � ��4 ¢ 4 is always set to 1. For the mean of the distribu-
tions for the buyer à½â ¾ �Ô� 4 , we conduct experiment with 3 different values: 1.1, 1.25, 1.5. Otherwise stated,
the valuations of the Buyer are, on average 10%, 25% to 50% greater than those of the Seller. In the re-
ported tests,

á
takes 8 values, ranging from 0 to 5. In other words, we consider to whole spectrum from no

randomness, and consequently linear preferences, to a very high degree of randomness, and consequently
(with probability) highly nonlinear preferences. Recall from Section 3.4 that the seller uses a subutility
functions in conjunction with the utility graph to model a buyer. These functions are initialized such that
the seller on average correctly predicts the opponent’s utility. Already for relatively small values of

á
the

initially predicted utilities will (with all likelihood) be very different from the actual values, however.
For each combinations of values of à � ��4 ¢ 4 , à+â ¾ �Ô� 4 , and

á
, 100 tests were performed. This means in

total: �!Ã H Ã ± Ã\��:���p� P �:� tests were performed (or 300 tests for each point
á

reported in the figures
below. For this number of tests per points the variance of the results does not decrease, we can therefore
conclude that this number of tests provides statistically significant results.

4.2 Experimental results
The experimental results produced from the setting described above are given in Fig. 3 and 4. As men-
tioned, each point was produced from 300 negotiations and the error bars give the resulting variance. The
two figures highlight the results with respect to reaching an agreement over the bundle configuration (i.e.,
the actual content of the bundle). By agreement, we mean that thereafter the bundle content no longer
changes. After such an agreement is reached, it may take more negotiation rounds before bargainers agree
upon the price (if an agreement is reached at all). The Pareto-efficiency of a deal — which is the focus of
this paper — is then already determined, however.

10

NVTI Nieuwsbrief 23

There are several conclusions that can be drawn from the analysis of these results. Regarding the ability
to find a bundle close to maximum efficiency (Fig. 3), we can conclude that our approach performs very
well. (Please keep in mind that the Y axis in Fig. 3 is scaled for values between 80% and 100% of optimal).
Even for very high values of

á
, the algorithm is able to extract around 97% of the maximum gains from

trade, with a variance of maximal 5%. This is particularly remarkable for very large values of
á

(e.g.,
á

between 4-5). For these values, (with all likelihood) the problem becomes highly nonlinear and the buyer’s
utilities predicted initially by the seller will be very different from the actual values.

Regarding the number of steps needed to find the optimal configuration (Fig. 4), we do see a significant
increase in this number for larger values of

á
. Clearly, problems for larger

á
are more difficult to solve,

so more steps are needed to correctly update the model of buyer’s preferences and to find a good bundle.
Nevertheless, a bundle very close to maximal efficiency is usually found, even in these more difficult cases.

Thus, the results strongly support the underlying idea put forward in this paper. That is, having a maxi-
mal utility graph of possible interdependencies can be used to successfully navigate the contract space and
reach Pareto-efficiency with a limited number of steps, even for a relative large number of interdependent
issues.

 80

 85

 90

 95

 100

 0 0.5 1 1.5 2 3 4 5

Pe
rc

en
ta

ge
 o

f o
pt

im
al

 G
ai

ns
 fr

om
 T

ra
de

Standard Deviation for generating test profiles

Efficiency of reached agreements (50 issues)

Figure 3: Percentage of the Gains from Trade (compared to the Pareto-optimal bundle) achieved over 100
tests

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 3 4 5

Nu
m

be
r o

f n
eg

ot
ia

tio
n

st
ep

s

Standard Deviation for generating test profiles

Number of steps to agreement (50 issues)

Figure 4: Number of steps needed to configuration agreement

11

24 NVTI Nieuwsbrief

5 Discussion
In this section we provide a review of related work, with special attention to the features relevant for our
approach. We summarize the main contributions of our work. Subsequently, we discuss follow-up work
and identify directions for future research.

5.1 Related work and contributions
Most of the work in multi-issue negotiations has focused on the independent valuations case. Faratin, Sierra
& Jennings [10] a method to search the utility space over multiple attributes is introduced, which uses fuzzy
similarity criteria between attribute value labels as prior information. Coehoorn and Jennings [5] extends
this model with a method to learn the preference weights that the opponent assigns to different issues in
the negotiation set, by using kernel density estimation. Jonker and Robu [11] consider a similar model, the
prior information are not fuzzy similarity criteria but a partial ordering of value labels. Both these papers
have the advantage that they allow flexibility in modeling and deal with incomplete preference information
supplied by the negotiation partner. They do not consider the question of functional interdependencies
between issues, however.

Other approaches to multi-issue negotiation problem are the agenda based approach (Fatima et. al.
[9]) and the constraint-based negotiation approach (Luo et. al. [22]). Both provide comprehensive formal
analyses. They do not address the scalability and interdependence, however. Debenham [7] proposes a
multi-issue bargaining strategy that models the iterative information gathering which takes place during
the negotiation. Unlike our approach, the agents in [7] do not model the preferences of their opponent,
but construct a probability distribution over all possible outcomes. However, this paper does not consider
efficiency criteria for the reached outcomes (such as Pareto-efficiency), nor does it discuss scalability issues
(it provides a convincing example, but restricted to only two issues).

Two negotiation approaches that specifically address the problem of complex inter-dependencies be-
tween multiple issues — and are therefore most related to our work — are [12, 14]. Klein et. al. [12] use
a setting similar to the one considered in this paper, namely bilateral negotiations over a large number of
boolean-valued issues with binary interdependencies (although we also allow higher-level interdependen-
cies, up to P items). In this setting, they compare the performance of two search approaches: hill-climbing
and simulated annealing and show that if both parties agree to use simulated annealing, then Pareto-efficient
outcomes can be reached. In a similar line of work, Lin [14] uses evolutionary search techniques to reach
optimal solutions. Both of these approaches have the advantage that they are scalable to large numbers of
issues and Pareto-efficient outcomes can be reached without any prior information. However, a drawback
of these learning techniques is the large number of negotiation steps needed to reach an agreement (around
2000 for 50 issues [12]).

By comparison with this work, our approach uses an explicit model of the buyer utility function - in
the form of a utility graph. Although we assume no prior information about the preferences of any given
opponent, we do assume that the maximal super-set of all possible interdependencies which are possible
in the domain is known. This allows us to restrict the size of the search space and therefore reach Pareto-
efficient agreements considerably faster. To some degree our approach could be also compared to solutions
proposed to determine the winner in combinatorial auctions (Conitzer et. al. [6]). The problem is, in the
general case, intractable, but by imposing some constraints on the type of bids which can be specified,
efficient solutions can be found.

Our solution should be applicable in complex domains where fast agreements must be reached, by
using some prior information about the structure of the utility space to be explored. This prior information
could be a history of past negotiations or the input of domain experts. The relatively small number of
steps needed to reach an agreement in our model allows it to be used in time-constrained negotiations or
negotiation where impatience of one of the parties is a limiting factor. This is a significant result since, to
the best of our knowledge, bargaining under time pressure in negotiations with many, inter-dependent issues
was not considered in previous literature. Furthermore, in our setting, no trusted mediator is needed and
the negotiating agents keep their preference information (i.e. monetary utility, respectively costs) private.

Another direction of research relevant to our work is the one on graphical representations of utility func-
tions. Bacchus and Grove [3] provide an early fundamental discussion of the graphical modeling of utility

12

NVTI Nieuwsbrief 25

and preference functions and introduce the concept of conditionally additive independence. Their work
is mostly concerned with formally analysing the semantics and properties of graphical utility representa-
tions. Chajewska and Koller [4] build on this idea, by discussing the decomposability of non-linear utility
functions into clusters and, in addition, they present an efficient procedure for eliciting such functions from
human users, in a medical application domain.

In comparison with these works, our approach is geared towards finding an efficient algorithm which
exploits the structure of utility graphs to model an online learning problem, such as negotiation, where
agent preferences are revealed only indirectly, through repeated offers and counter-offers. Therefore we
adapt the utility graph formalism for our setting, to assure a good trade-off between representation power
of complex utility functions on one side, and computational efficiency in exploring the large bundle space
on the other. To the best of our knoweldge, very little work exists which applies this powerful formalism
to settings which require online learning on the part of the agents, especially negotiation or virtual market
settings.

5.2 Subsequent work and future research
A important issue which remains is the construction of the structure of the utility graph from scratch,
without any prior information. One could focus here on developing automatic and advanced techniques,
which could be inspired by learning in graphical models ([13, 16]). For this purpose, aggregate customer
information (for example information regarding all previous negotiations) could be used. This problem is
addressed in the companion paper [20].

In [20], the results of [19] are extended by proposing a method for constructing the utility graphs of
buyers automatically, based on previous negotiation data. The method is based on techniques inspired
from item-based collaborative filtering, used in online recommendation algorithms. Experimental analysis
shows that the approach is able to retrieve the structure of utility graphs online, with a high degree of
accuracy, even for highly non-linear settings and even if a relatively small amount of data about concluded
negotiations is available.

Future research could follow two directions. One direction is extending the current model to handle
simultaneous one-one negotiation threads. For this, the problem of syncronising the exchange of offers and
especially the concessions made between parties remains an important open issue. Another direction of
potential further research is the applicability of the utility graph concept to model agent decision making
in other settings. For example, in virtual market scenarios, utility graphs could be used to devise efficient
bidding policies for simultaneous, sequential or repeated auctions.

References
[1] P.S. Albin. Barriers and Bounds to Rationality: Essays on Economic Complexity and Dynamics in

Interactive Systems. Princeton University Press, Princeton, NJ, USA, 1998.

[2] Andreu Mas-Collel, Michael D. Whinston, and Jerry R. Green. Mircoeconomic Theory. Oxford
University Press, 1995.

[3] F. Bacchus and A. Grove. Graphical models for preference and utility. In Uncertainty in Artificial
Intelligence UAI-95, pages 3–10, 1995.

[4] U. Chajewska and D. Koller. Utilities as random variables: Density estimation and structure discov-
ery. In Proceedings of sixteenth Annual Conference on Uncertainty in Artificial Intelligence UAI-00,
pages 63–71, 2000.

[5] R. M. Coehoorn N. R. Jennings. Learning an opponent’s preferences to make effective multi-issue
negotiation tradeoffs. In Proc. 6th Int Conf. on E-Commerce, Delft, The Netherlands, pages 59–68,
2004.

[6] V. Conitzer, J. Derryberry, and T. Sandholm. Combinatorial auctions with structured item graphs. In
In Proc. of the National Conf. on Artificial Intelligence (AAAI), 2004.

13

26 NVTI Nieuwsbrief

[7] J. Debenham. Bargaining with information. In 3rd Int. Conf. on Autonomous Agents & Multi Agent
Systems (AAMAS), New York, July 19-23, 2004, pages 663–670, 2004.

[8] P Faratin, C Sierra, and N.R Jennings. Negotiation decision functions for autonomous agents.
Robotics and Autonomous Systems, 24(3–4):159–182, 1998.

[9] N. Jennings S. Fatima, M. Woolridge. Optimal negotiation of multiple issues in incomplete informa-
tion settings. In 3rd Int. Conf. on Autonomous Agents & Multi Agent Systems (AAMAS), New York,
pages 1080–1087, 2004.

[10] N. R. Jennings P. Faratin, C. Sierra. Using similarity criteria to make issue trade-offs in automated
negotiations. Journal of Artificial Intelligence, 142(2):205–237, 2002.

[11] C. Jonker V. Robu. Automated multi-attribute negotiation with efficient use of incomplete preference
information. In 3rd Int. Conf. on Autonomous Agents & Multi Agent Systems (AAMAS), New York,
pages 1056–1063, 2004.

[12] M. Klein, P. Faratin, H. Sayama, and Y. Bar-Yam. Negotiating complex contracts. Group Decision
and Negotiation, 12:111–125, 2003.

[13] S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford UK, 1996.

[14] R. Lin. Bilateral multi-issue contract negotiation for task redistribution using a mediation service. In
Proc. Agent Mediated Electronic Commerce VI, New York, USA, 2004.

[15] A. R. Lomuscio, M. Wooldridge, and N. R. Jennings. A classification scheme for negotiation in
electronic commerce. Group Decision and Negotiation, 12:31–56, 2003.

[16] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan
Kaufmann, San Mateo, California, 1988.

[17] H. Raiffa. The art and science of negotiation. Harvard University Press, Cambridge, Massachussets
USA, 1982.

[18] R. L. Rivest T. H. Cormen, C. E. Leiserson. Introduction to algorithms. The MIT Press, 1989.

[19] V. Robu, K. Somefun, H. La Poutré. Modeling Complex Multi-Issue Negotiations Using Utility
Graphs. In Proceedings of the Fourth International Joint Conference on Autonomous Agents and
Multi Agent Systems (AAMAS), ACM Press, pages 280 – 287, 2005.

[20] V. Robu, H. La Poutré. Learning the Structure of Utility Graphs Used in Multi-Issue Negotiation
through Collaborative Filtering. In Proceedings of the Pacific Rim International Workshop on Multi-
Agents (PRIMA’05), Kuala Lumpur 2005, Springer Lecture Notes in Artificial Intelligence (LNCS /
LNAI), Springer-Verlag, to appear.

[21] T.S. Sargent. Bounded Rationality in Macroeconomics. Oxford University Press, New York, NY,
USA, 1993.

[22] N. Shadbolt H. Leung J. H. Lee X. Luo, N. R. Jennings. A fuzzy constraint based model for bilateral
multi-issue negotiations in semi-competitive environments. Artificial Intelligence Journal, 142 (1-
2):53–102, 2003.

[23] D.J.A. Somefun, T.B. Klos, and J.A. La Poutré. Online learning of aggregate knowledge about non-
linear preferences applied to negotiating prices and bundles. In Proc. 6th Int Conf. on E-Commerce
(ICEC), Delft, ACM Press, pages 361–370, 2004.

14

NVTI Nieuwsbrief 27

Expressivity of finitary coalgebraic logics

C. Kupke

Abstract

We give a brief introduction to the theory of coalgebras and discuss the connection between
coalgebra and modal logic. In the second more technical part of this paper - summarizing known
results - we prove that the finitary version of Moss’ coalgebraic logic has the Hennessy-Milner
property.

Summary

The purpose of this short paper is twofold. On the one hand we want to draw the attention of the
more general audience to the relatively young field of universal coalgebra and its relationship with
modal logics. On the other hand we present two facts about coalgebras which might be interesting
for the part of the audience that has already some background knowledge in coalgebra. Therefore
in the first part of the paper we will try to explain the notion of a coalgebra and of coalgebraic
bisimulations by stating the definitions and by providing several examples. Nevertheless the paper
cannot be seen as a proper introduction to coalgebras. The interested reader is referred to [4, 11]
for an introduction to the field of universal coalgebra. Readers whose background lies in modal
logic and its algebraic semantics are recommended to consult the recently published [13].

The paper also contains two technical results: In Section 2 we establish a link between the
bisimilarity game and the final sequence of a functor (cf. Theorem 2.9). In Section 4 we obtain - fol-
lowing the ideas of Moss in [7] - the result that finitary coalgebraic logics have the Hennessy-Milner
property on coalgebras for an ω-accessible, weak pullback preserving set functor (cf. Theorem 4.1).

1 Coalgebras

A coalgebra consists of a set of states 1 and a coalgebra map which can be used to make observations
about coalgebra states. The type of these observations is specified by a functor. Often it is
possible to assign to every coalgebra state x its behavior which can be thought of as a sequence
of observations generated by repeatedly applying the coalgebra map to x and its successors. For
example we can think of a coalgebra in which we can observe for each state x a letter a of some
alphabet Σ and some successor state x′. In this case the behaviour of x will be an infinite Σ-word.
Unlike in algebra, elements of a coalgebra are not constructed from generators and operations.
In fact one should think of the elements of the coalgebra as given from the outset. Using the
coalgebra map one can obtain (limited) information about them. This makes it possible to use
coalgebras for modeling objects with infinite or non-wellfounded “behavior” such as infinite words,
trees or graphs. A reader familiar with functional programming languages such as Haskell could
obtain some intuition about coalgebras by thinking of them as of lazy implementations of infinite
objects.

1.1 The formal definition

When introducing coalgebras it is almost inevitable to use category theoretic terminology. It
should be noted, however, that for the understanding of this paper only an intuitive understanding

1This is not the most general definition, but we will only consider coalgebras that have a carrier set.

1
28 NVTI Nieuwsbrief

of the notion of a category and of a functor between categories is necessary. In fact we will
mostly work in the category Set that has sets as objects and functions as arrows. A functor is a
structure preserving map between categories. A set functor F : Set → Set maps sets to sets and
functions to functions. Furthermore F preserves the composition of functions and identities, i.e.
F(f ◦ g) = Ff ◦ Fg and FidX = idFX where for an arbitrary set X we denote by idX the identity
function on X.

Definition 1.1 Let F : Set → Set be a functor. Then an F-coalgebra is a pair (X, γ) where
X ∈ Set and γ : X → FX ∈ Set. A pointed F-coalgebra (〈X, γ〉, x) is an F-coalgebra 〈X, γ〉
together with a designated point x ∈ X. C

Example 1.2 1. Let Σ be a set (of colors). Furthermore let BΣ be the functor that maps a
set X to the set Σ ×X ×X and a function f : X → Y to the function that maps a triple
(c, x, x′) ∈ Σ×X ×X to the triple (c, f(x), f(x′)). Then infinite Σ-labeled binary trees are
pointed BΣ-coalgebras: a given Σ-labeled tree t : 2∗ → Σ corresponds to the coalgebra with
carrier set 2∗ and coalgebra map w 7→ (t(w), w0, w1).

2. Deterministic, finite Σ-word automata can be modeled as pointed coalgebras for the functor
AΣ = 2 × ()Σ, where Σ is the finite alphabet and 2 is the two-element set, i.e. the functor
AΣ maps a set X to the set 2 × XΣ and a function f : X → Y to the function that maps
a pair (o, t) ∈ 2 × XΣ to the pair (o, f ◦ t). More about this fundamental example can be
found in [9].

3. Image-finite Kripke frames correspond to coalgebras of the power set functor Pω. The functor
Pω maps a set to its collection of finite subsets, and a function f : X → Y to its direct image
function Pωf : PωX → PωY given by (Pωf)(U) := {f(x) ∈ Y | x ∈ U}. An image-finite
Kripke frame (W,R) is then modeled as the coalgebra (W,λx.R[x]), that is, the relation R
is given by the function mapping a state x to the collection R[x] of its (direct) successors.2

4. Let Φ be a set (of propositional variables) and consider the functor PΦ × Pω, that maps a
set X to the set PΦ × PωX and a function f : X → Y to the function idPΦ × Pωf . Then
an image finite Kripke model (W,R, V : Φ → P(W)) corresponds to the PΦ×Pω-coalgebra
〈W, 〈V], λx.R[x]〉 : W → PΦ× PωW 〉 where p ∈ V](w) if w ∈ V (p).

5. Let Dω be the functor that maps a set S to the set

DωS :=
n
ρ : S ⇀ [0, 1] | ρ has finite support and

P
s∈Sρ(s) = 1

o
where we say that a (partial) function ρ has finite support if ρ(s) 6= 0 for only finitely many
elements s of S. Then coalgebras for the functor 1 + Dω correspond to the probabilistic
transition systems by Larsen and Skou in [6]. Here 1 + Dω denotes the functor that maps
a set S to the disjoint union of the one-element set and the set DωS. Further details about
this example can be found in [7, 12].

The message of these examples should be clear: coalgebras can be used to uniformly model various
types of transition systems. The advantage of such a uniform approach lies in the fact that notions,
that are usually studied in isolation for different system types, can now be seen as instances of one
coalgebraic concept. As examples for this phenomenon we are now going to present the notions
of a coalgebra morphism and of a coalgebraic bisimulation. After that we look at some concrete
instances of these coalgebraic notions.

Definition 1.3 Let X = 〈X, γ〉 and Y = 〈Y, δ〉 be two F-coalgebras then a function f : X → Y
is an F-coalgebra morphism from X to Y if δ ◦ f = Ff ◦ γ, i.e. if the left diagram in Figure 1
commutes.

A relation Z ⊆ X ×Y is an F-bisimulation between X and Y if there exists a function µ : Z →
FZ such that the projection maps π1 : Z → X and π2 : Z → Y are coalgebra morphisms, i.e.,
such that the right diagram in Figure 1 commutes. Two states are (F-)bisimilar if they are linked
by some bisimulation. We write x↔F y if the states x and y are F-bisimilar. C

2If we drop the finiteness condition from the definition of the functor Pω we obtain the power set functor P. P-
coalgebras are Kripke frames.

2
NVTI Nieuwsbrief 29

X

γ

��

f // Y

δ

��
FX

Ff
// FY

X

γ

��

Z
π2 //π1oo

∃µ

���
�
� Y

δ

��
FX FZ

Fπ2

//
Fπ1

oo FY

Figure 1: F-coalgebra morphism and F-bisimulation

Let us have a look at some concrete instances of F-coalgebra morphisms and F-bisimulations.

Example 1.4 1. Let F = BΣ (cf. Example 1.2(1)) for some set of labels Σ. Then f : X → Y
is a BΣ-coalgebra morphism between two BΣ-coalgebras 〈X, 〈c, γ〉 : X → Σ× (X ×X)〉 and
〈Y, 〈d, δ〉 : Y → Σ× (Y × Y)〉 if for all x ∈ X we have c(x) = d(f(x)) and if γ(x) = (x1, x2)
implies δ(f(x)) = (f(x1), f(x2)). In words, f has to preserve the labeling and the binary
tree structure. It is not difficult to check that two binary trees t1 and t2 are BΣ-bisimilar iff
they are identical.

2. Let F = AΣ = 2×()Σ. Then pointed F-coalgebras with finite carrier set correspond to finite,
deterministic automata (cf. Example 1.2(2)). Two automata accept the same language iff
the corresponding pointed F-coalgebras are F-bisimilar (cf. [9]).

3. Recall from Example 1.2(4) that F-coalgebras for the functor F = PΦ × Pω correspond to
image-finite Kripke models. Then F-coalgebra morphisms are precisely the bounded mor-
phisms between Kripke models. F-bisimulations correspond exactly to the bisimulations
from modal logic, i.e. a relation R between two (image-finite) Kripke models (W1, R1, V)
and (W2, R2, V) is a modal bisimulation iff R is a PΦ×Pω-bisimulation between the corre-
sponding PΦ× Pω-coalgebras.

4. Let F be the functor 1 + Dω (cf. Example 1.2(5)). It can be shown that F-bisimulations
between F-coalgebras coincide with the probabilistic bisimulations from [6] between the cor-
responding probabilistic transition systems. For the details we again refer to [7, 12].

In Section 2 we will continue our discussion of bisimilarity by showing that coalgebraic bisimilarity
has also a nice game-theoretic interpretation. Furthermore in Section 3 we will recall the definition
of some logical language that can be used for reasoning about F-coalgebras. In the remainder of
this section we will fix the technical preliminaries.

1.2 Technicalities

In the following we will make some assumptions on the functor F under consideration. Readers
who are not interested in all the technical details are advised to skip this section and to think of
F in the sequel as of some functor in Example 1.2.

The first assumption we make is that all our functors are set functors. Furthermore we will
assume the functors we are working with to be

• standard: for all set X and Y such that X ⊆ Y we have that FX ⊆ FY and the inclusion
map ιX,Y from X into Y is mapped by F to the inclusion map ιFX,FY from FX into FY .

• ω-accessible: for all sets Y and all elements t ∈ FY there is a finite set X ⊆ω Y such that
t ∈ FX.

Moreover all the functors that we are considering are weak pullback preserving. This is a property
which often occurs in the coalgebraic literature. For details about this important, but rather
technical condition we refer the reader to [11]. From now on we assume F to be a standard,
ω-accessible and weak pullback preserving set functor.

3
30 NVTI Nieuwsbrief

1.3 Relation Lifting

A useful property of F is that it has a well-behaved relation lifting. We will first define this relation
lifting, then list the properties we need. In the sequel this relation lifting allows us to use a concise
formulation of the notion of a coalgebraic bisimulation. In addition to that it is central in the
definition of the coalgebraic logic we are considering.

Definition 1.5 Given two sets X and Y , and a binary relation Z between X × Y , we define the
lifted relation F(Z) ⊆ FX × FY as follows:

F(Z) := {((Fπ)(φ), (Fπ′)(φ)) | φ ∈ FZ},

where π : Z → X and π′ : Z → Y are the projection functions given by π(x, y) = x and
π′(x, y) = y. C

Example 1.6 1. Let Σ be a set of colors and let F = BΣ and let R ⊆ X × Y be a re-
lation. Then for arbitrary elements (c, x1, x2) ∈ BΣX and (d, y1, y2) ∈ BΣY we have
((c, x1, x2), (d, y1, y2)) ∈ FR iff c = d and (xi, yi) ∈ R for i = 1, 2.

2. Let Φ be a set (of propositional variables), let F := PΦ×Pω and let R ⊆ X×Y be a relation.
Then for arbitrary P ⊆ Φ, U ⊆ω X, Q ⊆ Φ and V ⊆ω Y we have

((P,U), (Q,V)) ∈ FR iff
(Prop) P = Q and
(Forth) ∀u ∈ U.∃v ∈ V s.t.(u, v) ∈ R and
(Back) ∀v ∈ V.∃u ∈ U s.t.(u, v) ∈ R.

Readers familiar with modal logic or process algebra will recognize the similarity of the rela-
tion lifting for the functor PΦ × Pω and the usual definition of a bisimulation between Kripke
frames/transition systems. This is not a coincidence as we will see when looking at the formulation
of the notion of an F-bisimulation in terms of the relation lifting (cf. Fact 2.1 below). For now
we just list some properties of the relation lifting of a standard and weak pullback preserving set
functor.

Fact 1.7 The relation lifting F satisfies the following properties, for all functions f : X → Y , all
relations R,Q ⊆ X × Y , and all subsets U ⊆ X, V ⊆ Y :
(1) F extends F: F(Gr(f)) = Gr(Ff); (Gr(f) denotes the graph of f)
(2) F commutes with relation converse: F(R)̆ = (FR)̆ ; (R˘ denotes the converse of R)
(3) F is monotone: if R ⊆ Q then F(R) ⊆ F(Q);
(4) F distributes over composition: F(R ◦Q) = F(R) ◦ F(Q);
(5) F commutes with restrictions, i.e. F(R�U×V) = (FR)�FU×FV .

For proofs we refer to [7, 1], and references therein.

2 Finite approximations of bisimilarity

In this section we state the definition of the bisimilarity game for coalgebras. Furthermore we
discuss a variation of the bisimilarity game, the n-bisimilarity game. Finally we link the game-
theoretic perspective to the categorical notion of the final sequence of a functor.

As a preparation we recall that F-bisimulations can be characterized using the relation lifting
of the functor F.3

Fact 2.1 [10] Let X = 〈X, γ〉 and Y = 〈Y, δ〉 be two F-coalgebras. A relation Z ⊆ X × Y is an
F-bisimulation between X and Y if (γ(x), δ(y)) ∈ F(Z) for all (x, y) ∈ Z.

This fact plays an important rôle in the definition of the bisimilarity game.

3This fact goes back to the work by Hermida and Jacobs in [3].

4
NVTI Nieuwsbrief 31

2.1 Bisimilarity game

The definition of the bisimilarity game for coalgebras goes back to Baltag (cf. [1]). The idea is
as follows: the game is played between the two players ∃ (Éloise) and ∀ (Abélard). Given two
pointed F-coalgebras (X, x) and (Y, y), ∃ claims that (x, y) are bisimilar, i.e. her claim is that there
exists some F-bisimulation Z between X and Y that relates x and y. The game board consists
of pairs of coalgebra states (x, y) (∃’s positions) and relations Z ⊆ X × Y (∀’s positions). At a
position (x, y) ∈ X × Y it is ∃’s turn and she has to move to a ”local bisimulation”, i.e. a relation
Z such that (γ(x), δ(y)) ∈ FZ (hence Z fulfills the condition from Fact 2.1 ”locally”). In turn,
∀ has to move from a position Z to a pair of states (x′, y′) ∈ Z. A match of the game is lost by
a player who cannot move. All infinite plays are won by ∃. The following definition introduces
the bisimilarity game more formally - readers who are not so familiar with the game-theoretic
notions are referred to [14] for a short summary of the necessary details and to [2] for a detailed
introduction to infinite (parity) graph games.

Definition 2.2 Let X := 〈X, γ〉 and Y := 〈Y, δ〉 be F -coalgebras. Then the arena of the image-
finite F -bisimilarity game B(X,Y) is given by the bipartite graph (B∃, B∀, E) that is described by
the following table:

Position: b Player Admissible moves: E[b]

(x, y) ∈ X × Y ∃ {Z ⊆ X × Y | (γ(x), δ(y)) ∈ FZ}

Z ∈ P(X × Y) ∀ {(x′, y′) | (x′, y′) ∈ Z}

Here the second column indicates whether a given position b belongs to player ∃ or ∀, i.e. whether
b ∈ B∃ or b ∈ B∀, and FZ is the relation lifting of Z. A match of B(X,Y) starts at some position
b0 ∈ B∃ ∪ B∀ and proceeds as follows: at position b ∈ B∃ player ∃ has to move to a position
b′ ∈ E[b] and likewise at position b ∈ B∀ player ∀ has to move to some b′ ∈ E[b]. A player who
cannot move (”gets stuck”) loses the match and all infinite matches are won by ∃. Two successive
moves in a match are called a round of the game. C

Fact 2.3 Let X := 〈X, γ〉,Y := 〈Y, δ〉 be F-coalgebras and let x ∈ X, y ∈ Y . Then 〈X, γ〉, x ↔
〈Y, δ〉, y iff ∃ has a winning strategy in the game B(X,Y) starting at position (x, y).

For a sketch of the proof of this fact cf. [14]. The game-theoretic analysis of F-bisimulations
naturally leads to the notion of n-bisimilarity.

Definition 2.4 We say that x and y are n-bisimilar (notation: (〈X, γ〉, x) ↔n (〈Y, δ〉, y)) if ∃ has
a strategy in the game B(X,Y) starting at position (x, y) such that ∃ does not lose the game in
less than n rounds. C

The next subsection will be devoted to proving that n-bisimilarity coincides with bisimilarity given
our assumption that the functor F is ω-accessible.

2.2 Final sequence

We now introduce the ”finitary part” of the final sequence of a functor, i.e. its first ω elements.
This final sequence plays an important rôle in the theory of coalgebras where it is used in order to
compute or approximate the final F-coalgebra. We only state and motivate the basic definition.
For more details about the final sequence of a functor we refer the reader to [15] and references
therein.

Definition 2.5 Given a set functor F we inductively define functions pi : Fi+11 → Fi1 for all
i ∈ N by putting p0 :=!F1 and pi+1 := Fpi. Here 1 denote the one-element set, !X denotes the
(unique) function from a set X to the one-element set 1 and for a set X we write F0X := X and
Fi+1X := F(FiX). For all n ∈ N elements of the set Fn1 will be called n-step behavior. C

The sequence is depicted in the lower part of Figure 2. Let us give an example which illustrates
why we chose the name ”n-step behavior” for members of the nth element of the sequence.

5
32 NVTI Nieuwsbrief

X
γ //

γ0

����
��

��
��

��
��

��
��

�

γ1

��

γ2

 A
AA

AA
AA

AA
AA

AA
AA

AA

**TT FX

. . .

1 F1
!F1

oo F21
F!F1

oo . . . Fn1 . . .

Figure 2: Final sequence and n-step behavior maps

Example 2.6 Let Σ be set of labels and let F = BΣ. Then it is not difficult to see that for all
n ∈ N the set Fn1 is isomorphic to the set of finite Σ-labeled binary trees of depth n.

We will make use of the fact that given an F-coalgebra 〈X, γ〉 one can easily define a sequence
{γn}n∈N of functions that map any coalgebra state x ∈ X to its n-step behavior. We now give the
formal definition of these γn’s, Figure 2 provides a picture of the situation.

Definition 2.7 Given an F-coalgebra X = 〈X, γ〉 and a state x ∈ X we define a family of maps
{γn : X → Fn1}n∈N by putting

γ0(x) := !X
γi+1(x) := Fγn ◦ γ C

Intuitively for each n ∈ N the map γn maps a state x to its n-step behavior.

Example 2.8 In the above example for F = BΣ recall from Example 1.2 that a Σ-labeled infinite
binary tree t corresponds to a BΣ-coalgebra. In this case, intuitively speaking, the map γn maps
t to the Σ-tree of depth n that consists of the first n levels of t.

For much more information and results about the final sequence of an ω-accessible functor the
reader is referred to [15]. We now make a connection between the bisimilarity game and the final
sequence of F.

Theorem 2.9 Let (〈X, γ〉, x) and (〈Y, δ〉, y) be pointed F-coalgebras. Then for all n ∈ N we have

γn(x) = δn(y) iff x ↔n y.

Proof. For i ∈ N let Zi := Gr(γi) ◦ Gr(δi)̆ and put Bi := {(x′, y′) ∈ X × Y | (〈X, γ〉, x) ↔n

(〈Y, δ〉, y)}. The claim of the proposition is equivalent to saying that

Zi = Bi for all n ∈ N (1)

In order to facilitate the proof of (1) we first show that the following holds for all (x, y) ∈ X × Y
and all i ∈ N:

(x, y) ∈ Zi+1 iff (γ(x), δ(y)) ∈ FZi. (2)

This can be seen by just spelling out the definitions and by using Fact 1.7:

(x, y) ∈ Zi+1 iff (x, y) ∈ Gr(γi+1) ◦Gr(δi+1)̆ (Def. of Zi+1)
iff (x, y) ∈ Gr(Fγi ◦ γ) ◦Gr(Fδi ◦ δ)̆ (Def. of γi+1, δi+1)
iff (x, y) ∈ Gr(γ) ◦Gr(Fγi) ◦Gr(Fδi)̆ ◦Gr(δ)̆
iff (γ(x), δ(y)) ∈ Gr(Fγi) ◦Gr(Fδi)̆

iff (γ(x), δ(y)) ∈ F(Gr(γi) ◦Gr(δi)) = FZi (Fact 1.7)

We now prove (1) by induction on n. For n = 0 there is nothing to prove, because Z0 = B0 = X×Y .
Inductively assume that Zi = Bi for some i ∈ N. We have to show that Zi+1 = Bi+1.

6
NVTI Nieuwsbrief 33

⊆ Let (x, y) ∈ Zi+1, i.e. γi+1(x) = δi+1(y). This implies by (2) that (γ(x), δ(y)) ∈ FZi. Therefore
∃ can move in the bisimilarity game B(X,Y) from position (x, y) to position Zi. By I.H.
we know that all positions (x′, y′) ∈ Zi are in Bi, i.e. ∃ has a strategy such that for all
(x′, y′) ∈ Zi she does not lose any match starting at (x′, y′) in less than i rounds. As a
consequence by moving from (x, y) to Zi she has a strategy in B(X,Y) such that she does
not lose in less than i+ 1 rounds which means that (x, y) ∈ Bi+1.

⊇ Suppose (x, y) ∈ Bi+1, i.e. ∃ has a strategy in B(X,Y) such that she does not lose any match
starting at position (x, y) in less than i + 1 rounds. In particular she can move from (x, y)
to some relation R ⊆ X × Y such that (γ(x), δ(y)) ∈ FR and such that R ⊆ Bi. Therefore,
by monotonicity of F, (γ(x), δ(y)) ∈ FBi and thus by I.H. (γ(x), δ(y)) ∈ FZi. This implies
by (2) that (x, y) ∈ Zi+1.

qed

As a corollary we obtain the earlier announced result that the game-theoretically defined notion
of n-bisimilarity forms a good finite approximation of bisimilarity.

Corollary 2.10 Let F be a set functor that meets the requirements in Section 1.2. Furthermore
let X = 〈X, γ〉,Y = 〈Y, δ〉 be two F-coalgebras with designated points x ∈ X and y ∈ Y . Then

x ↔F y iff ∀n. x ↔n y.

Proof. It has been shown in [15] that γn(x) = δn(y) for all n ∈ N implies X, x ↔F Y, y under
the assumption that F is ω-accessible. Therefore the claim of the proposition is an immediate
consequence of 2.9. qed

3 Modal logic in a coalgebraic shape

In the first section of this paper we showed that coalgebras provide a framework for modeling
various types of transition systems. The natural question to ask is whether we can also develop
logical languages to reason about coalgebras. Modal languages have been successfully employed
for reasoning about transition systems. Hence these languages are a good candidate for the
specification of coalgebras. The various coalgebraic modal languages that have been proposed to
talk about coalgebras can roughly be split into two groups.

1. Languages whose modalities are given by so-called predicate liftings. For an introduction to
these languages we refer the reader to [5, 8, 13] and references therein.

2. Languages that are defined via the relation lifting of F. This approach has originally been
introduced by Moss in [7].

We will now present the definition of a version of Moss’ coalgebraic logic that has a finitary syntax.
This logic has been introduced in [14]. Unlike loc.cit. we do not consider fixed point operators.
Furthermore, as mentioned before, we work under the general requirement that we are given a set
functor F that is ω-accessible, standard and weak pullback preserving.

Definition 3.1 The language of (finitary) coalgebraic logic LF is defined inductively as follows:

LF
0 3 φ ::= ⊥| > | φ ∧ φ | φ ∨ φ

LF
i+1 3 φ ::= ψ ∈ LF

i | φ ∧ φ | φ ∨ φ | ∇π, π ∈ FLF
i

LF :=
[
i∈N

LF
i

The depth of a formula φ ∈ LF is defined as the smallest natural number iφ such that φ ∈ LF
iφ

. C

Remark 3.2 From the definition it is clear that LF is a set (in contrast to Moss’ original language
which consisted of a proper class of formulas). The difference with Moss’ original definition is
that the syntax only contains finite conjunctions and, in addition to that, finite disjunctions.
Furthermore Venema defines the notion of a subformula and shows in [14] that every formula of
LF has a finite number of subformulas. These facts justify to say that LF has a finitary syntax.

7
34 NVTI Nieuwsbrief

The semantics of the logic is defined as follows.

Definition 3.3 Let X = 〈X, γ〉 be an F-coalgebra We inductively define a relation |=X⊆ X ×LF

with the intended meaning that (x, φ) ∈ |=X if φ is satisfied at x ∈ X. In this case we also write
x |=X φ. The inductive definition of |=X is as follows: We put x 6|=X⊥, x |=X > and

x |=X φ1 ∧ φ2 if x |=X φ1 and x |=X φ2,

x |=X φ1 ∨ φ2 if x |=X φ1 or x |=X φ2,

x |=X ∇π if (γ(x), π) ∈ F(|=X).

If the X is clear from the context we simply write |= for the relation |=X⊆ X × LF. Furthermore
we write Th(x) for the theory of x, i.e. Th(x) := {φ ∈ LF | x |= φ}. C

Remark 3.4 The definition of the semantics of a formula ∇π ∈ LF
i+1 is not circular because

(γ(x), π) ∈ F(|=) iff (γ(x), π) ∈ F
“
(|=)�X×LF

i

”
,

where (|=) �X×LF
i

denotes the restriction of |=X⊆ X × LF to X × LF
i . This can be seen by using

that π ∈ FLF
i and by using Fact 1.7(5). The depth of formulas in Li is strictly smaller than the

depth of ∇π and thus we can inductively assume that (|=)�X×LF
i

has been already defined.

Example 3.5 Let Φ be a set of propositional variables and consider the functor F = PΦ× Pω .
Then the ∇-formulas in LF are of the form ∇(P,Ψ) where P ⊆ Φ is a set of propositional variables
and Ψ is a set of formulas. Informally speaking such a formula∇(P,Ψ) corresponds to the following
formula in the usual syntax of modal logic:

∇(P,Ψ) ≡
^
p∈P

p ∧
^
p 6∈P

¬p ∧
^
ψ∈Ψ

♦ψ ∧�
“ _
ψ∈Ψ

ψ
”
.

Similarly one can translate modal formulas into formulas of LF (cf. [14, Sec. 5]).

4 Expressivity of finitary coalgebraic logics

In this section we prove that the finitary coalgebraic logic as defined in Def. 3.1 has the Hennessy-
Milner property, i.e. we prove Theorem 4.1 below. Let us once more stress that despite the fact
that we think that Theorem 4.1 has not been proven before, its proof can be seen as a rather
straightforward adaptation of the proof of an analogue result for infinitary coalgebraic logic in [7].

Theorem 4.1 Let F be an ω-accessible set functor. Then the language LF has the Hennessy-
Milner property, i.e. for all pointed F-coalgebras (〈X, γ〉, x) and (〈Y, δ〉, y) we have

Th(x) = Th(y) iff (〈X, γ〉, x) ↔F (〈Y, δ〉, y),

i.e. two pointed F-coalgebras satisfy the same LF-formulas iff they are F-bisimilar.

As usual the easier part of proving the Hennessy-Milner property is to prove the invariance of the
semantics of a formula under bisimilarity.

Fact 4.2 ([14]) Let F be an ω-accessible functor and let (〈X, γ〉, x) and (〈Y, δ〉, y) be pointed F-
coalgebras such that (〈X, γ〉, x) ↔F (〈Y, δ〉, y). Then for all formulas φ ∈ LF we have

(〈X, γ〉, x) |= φ iff (〈Y, δ〉, y) |= φ.

For the proof of the fact that logical equivalence implies bisimilarity we use our result from the
previous section, where we saw that n-bisimilarity for all n and bisimilarity coincide if the functor is
ω-accessible. The idea is to define for each n ∈ N a set of characteristic formulas that characterize
the behavior of a given pointed F-coalgebra up-to depth n. These formulas have been introduced
in [7] in order to prove the analogue of Theorem 4.1 for infinitary coalgebraic logic.

8
NVTI Nieuwsbrief 35

Definition 4.3 For i ∈ N we define a function ∇i : Fi1 → LF by putting

∇0(∗) := > for ∗ ∈ 1
∇i+1(x) := ∇ (F∇i(x)) for x ∈ Fi+11 C

The intended meaning of the ∇i-maps is that they map a given state x ∈ Fi1, which represents
some possible i-step behavior, to its characteristic formula ∇i(x) of depth i. Let us have a look
at an example.

Example 4.4 Let Φ be a set. For the functor F = PΦ × Pω the characteristic formulas look of
depth ≤ 1 can be computed as follows:

Ψ0 = {>}, Ψ1 = {∇(P, {∗}) | P ∈ PΦ} ∪ {∇(P, ∅) | P ∈ Φ}

where Ψi denotes the image of ∇i. We can easily see that formulas in Ψ1 precisely determine the
1-step behavior of a given pointed F-coalgebra: the formula ∇(P, ∅) will be true at any state in
which exactly the propositional variables in P are true and which has no successors. Likewise the
formula ∇(P, {∗}) expresses that precisely the p’s in Φ are true and there is a successor.

The following observations about the ∇i-maps form the justification for calling the formulas of
the form ∇i(θ) “characterizing formulas”: a coalgebra state x that has a certain n-step behavior
θ satisfies precisely the formula ∇n(θ), i.e. no other formula of the form ∇n(θ′) for some θ′ 6= θ is
true at x.

Lemma 4.5 Let n ∈ N and let θ be an element of Fn1. Furthermore let (〈X, γ〉, x). Then

x |= ∇nθ iff θ = γn(x),

where γn(x) denotes the n-step behavior of x as defined in Definition 2.7 above.

Proof. The claim of the lemma can be written in terms of relations in the following way:

(|=X ◦Gr(∇n)̆) = Gr(γn). (3)

We define Rn := (|=X ◦Gr(∇n)̆). Equation (3) will be proven by induction on n. The base case
n = 0 is easy to check.

Inductively assume now that (3) is true for some i ∈ N. We show that in this case our claim
also holds for n = i+ 1. In order to see this note that by definition of Ri+1 we have (x, θ) ∈ Ri+1

iff x |=X ∇i+1(θ). Unfolding the definition of ∇i+1 we obtain

(x, θ) ∈ Ri+1 iff x |=X ∇ (F∇i(θ))

iff (γ(x),F∇i(θ)) ∈ F(|=X) (Def. of |=)

iff (γ(x), θ) ∈ F(|=X) ◦Gr(F∇i)̆

iff (γ(x), θ) ∈ F(|=X ◦Gr(∇i)̆) (Fact 1.7)

iff (γ(x), θ) ∈ FRi = FGr(γi) (Def. of Ri + I.H.)
iff (x, θ) ∈ Gr(γ) ◦Gr(Fγi) (Fact 1.7)
iff θ = (Fγi ◦ γ)(x) = γi+1(x) (Def. of γi+1)

qed

We are now well prepared for finishing the proof of Theorem 4.1.

Proof of Theorem 4.1. The fact that two F-bisimilar pointed F-coalgebras are also logically
equivalent was proven in Proposition 4.2. This is the implication from right to left in the theorem.

For the converse direction let (〈X, γ〉, x) and (〈Y, δ〉, y) be pointed F-coalgebras. We show that
x 6↔ y implies that Th(x) 6= Th(y). By Corollary 2.10 we know that x 6↔ y entails that there
is some n ∈ N such that (〈X, γ〉, x) 6↔n (〈Y, δ〉, y), i.e. such that the given pointed coalgebras
are not n-bisimilar. By Thm. 2.9 this implies γn(x) 6= δn(y). Therefore by Lemma 4.5 we have
x |= ∇n(γn(x)) and y 6|= ∇n(γn(x)), i.e. Th(x) 6= Th(y) as required. qed

9
36 NVTI Nieuwsbrief

5 Conclusion

We clarified the connection between the n-bisimilarity game and the final sequence of the functor.
Furthermore we showed that Moss’ arguments in [7] can be used to prove that finitary coalge-
braic logics have the Hennessy-Milner property over coalgebras for an ω-accessible, weak pullback
preserving functor.

The watchful reader will have noted that we did not make use of the game-theoretic inter-
pretation of bisimilarity at all. We could provide a direct game-theoretic proof of Cor. 2.10 but
did not do so due to lack of space. Furthermore we hope to obtain a better understanding of
the bisimilarity game by further exploring the connection between the n-bisimilarity game and
the final sequence that has been established in Thm. 2.9. As an example consider the functor
F = Pω(X)A for some infinite set A. This functor is not ω-accessible but, using Worrell’s results
on the final sequence of F, bisimilarity can be approximated by n-bisimulations. This fact is not
immediately obvious when looking only at the bisimilarity game.

References

[1] A. Baltag. A logic for coalgebraic simulation. In H. Reichel, editor, Proceedings of the
Workshop on Coalgebraic Methods in Computer Science (CMCS), volume 33 of Electronic
Notes in Theoretical Computer Science, 2000.

[2] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logic, and Infinite Games, volume
2500 of LNCS. Springer, 2002.

[3] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting.
Information and Computation, 145(2):107–152, 1998.

[4] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin, 62,
1997.

[5] A. Kurz. Coalgebras and modal logic. In Course Notes for ESSLLI’2001, 2001. Available at
http://www.cs.le.ac.uk/people/akurz/works.html.

[6] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and
Computation, 94(1):1–28, 1991.

[7] L. S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–317, 1999.

[8] D. Pattinson. An introduction to the theory of coalgebras. In North American Summer
School in Logic, Language and Information (NASSLLI), 2003.

[9] J.J.M.M. Rutten. Automata and coinduction (an exercise in coalgebra). In D. Sangiorigi and
R. de Simone, editors, Proc. 9th International Conference on Concurrency Theory (CON-
CUR’98), volume 1466 of LNCS, pages 194–218. Springer, 1998.

[10] J.J.M.M. Rutten. Relators and Metric Bisimulation (Extended Abstract). Electronic Notes
in Theoretical Computer Science, 11:1–7, 1998.

[11] J.J.M.M. Rutten. Universal coalgebra: A theory of systems. Theoretical Computer Science,
249:3–80, 2000.

[12] J.J.M.M. Rutten and E.P. de Vink. Bisimulation for probabilistic transition systems: a
coalgebraic approach. Theoretical Computer Science, 221(1–2):271–293, 1999.

[13] Y. Venema. Algebras and coalgebras. In Handbook of Modal Logic, volume 3, pages 331–426.
Elsevier, 2006.

[14] Y. Venema. Automata and fixed point logic: a coalgebraic perspective. Information and
Computation, 204:637–678, 2006.

[15] J. Worrell. On the final sequence of a finitary set functor. Theoretical Computer Science,
338(1–3):184–199, 2005.

10
NVTI Nieuwsbrief 37

Lekker bomen

Loredana Afanasiev, Balder ten Cate and Maarten Marx
ISLA, Universiteit van Amsterdam

The Netherlands

January 31, 2007

It has been proclaimed that logic is the calculus of computer science [15], but most applied com-
puter scientists do not use logical formulas in a shape recognizable by logicians — at least not beyond
propositional logic. In particular, this holds for modal logic. Even though theoretical computer sci-
entists have created many different modal logics, few of them are used in practice. Until recently, it
was fair to say that the temporal logics LTL and CTL were the best-known and most applied modal
logics [8]. With the advent of XML and its associated querying and processing languages, it seems
this position has been taken over by the XML document navigation language XPath.

XPath is a core fragment of the XML query language XQuery and transformation language XSLT.
All modern web browsers (e.g., Internet Explorer and Firefox) are able to process XPath expressions,
and most serious web programmers write XPath expressions on a regular basis (whether they are
conscious of it or not). Even though the current XPath manual contains 530 pages [17], the logical
core of the language is small and closely resembles modal logic. Thus, XPath is arguably the best
known and most applied modal logic today.

In this paper we give a gentle introduction to the XPath language from a logician’s point of view.
We discuss how its connections to modal logic have led to a series of results characterizing the ex-
pressive power of this language and the complexity of various computational tasks, such as query
evaluation and query containment testing.

1 Modal logic, temporal logic, and PDL

Nowadays, modal logic is mostly viewed as a language for describing graph-like structures. This
‘semantic’ view of modal logic stands in contrast to the more traditional ‘syntactic’ view, according
to which modal logic is just a propositional language enriched with two non truth-functional operators
♦ and �.

As Hans Kamp recently described it1, one of the most important steps in the historical develop-
ment of modal logic was to break out of the rigid box/diamond format. Kamp himself made the first
step in 1968 by introducing until [16]. This “binary modalities” makes it possible, in the context of
temporal logic, to express things like “A will be true at some point in the future and, until then, B is
true” (until(A,B) for short). Until make temporal logic very expressive. In fact, on time flows iso-
morphic to the natural numbers, temporal logic with until and its mirror image since is as expressive
as first-order logic, a result that has become known as Kamp’s Theorem [16]. However, what Kamp
described as a real watershed in modal logic was the invention of Propositional Dynamic Logic (PDL)

1A 15 minute presentation about the history of modal logic, on the occasion of the launch of the Handbook of Modal
Logic, on December 18, 2006, in the Oost Indisch Huis, Amsterdam.

1

38 NVTI Nieuwsbrief

in the 1970s [13]. PDL is a modal logic with infinitely many modalities (or, ‘programs’), that form an
algebra generated by atomic programs and formula tests using the operations of composition, union
and reflexive transitive closure, familiar from regular expressions.

Since PDL turns out to be closely related to the XML language XPath, let us explain its syntax
and semantics in a bit more detail. PDL expressions are interpreted over node labelled directed multi-
graphs, i.e., directed graphs with several relations, whose nodes are labelled.2 There are two types
of expressions in PDL: state formulas (φ, ψ, . . .) describing properties of points (or, ‘states’) in the
graph, and program formulas (α, β, . . .) describe ways of traversing it (more formally, they define
binary relations over the domain of the graph). They are defined by mutual recursion:

φ ::= p | ¬φ | φ ∧ ψ | 〈α〉φ

α ::= a | φ? | α/β | α ∪ β | α∗

where p is a node label and a is any of the relations of the multi-graph. State formulas of the form
〈α〉φ are interpreted as “some point reachable from the current point by α satisfies φ”, and state
formulas of the form [α]φ, dually, are interpreted as “every point reachable from the current point by
α satisfies φ”. The atomic program formula a is interpreted as “move to a node that is a successor of
the current point with respect to the relation a”, and φ? is interpreted as “stay at the current node but
check that φ is true there”. The program operations /, ∪ and ∗ are interpreted as composition, union
and reflexive-transitive closure.

To illustrate the expressive power of PDL, observe that, on the natural numbers with the successor
relation next, until(A,B) can be expressed in PDL as 〈(next/B?)∗/next〉A, that is, “it is possible to
reach a node satisfying A by the following program: do a finite number of successor steps followed
by tests on B, and end with one more successor step”.

PDL is quite well understood as a logical language. For instance, we know the computational
complexity of various tasks involving PDL formulas such as model checking and entailment.

Fact 1 (Complexity of PDL model checking). Given a finite node labelled directed multi-graph G
with a designated state s, and given a PDL formula φ, it can be tested in time O(|G| · |ψ|) whether φ
is true at s in G. Moreover, this problem is PTIME-complete.

Fact 2 (Complexity of PDL entailment). Given PDL formulas φ, ψ, it can be tested in time 2O(|φ|+|ψ|)

whether φ implies ψ (i.e., whether every state satisfying φ also satisfies ψ. Moreover, this problem is
EXPTIME-complete.

For more information, see e.g. [9, 4].

2 XML and sibling ordered trees

XML is a standard format for representation and exchange of semi-structured data on the internet.
Semi-structured data is, roughly, “data that is not structured enough to fit nicely in tables.” While
in the relational database model, the fundamental datastructure is that of a table, the fundamental
datastructure in XML is that of (finite) node labelled sibling ordered trees: node labelled finite trees
in which the children of each node are linearly ordered. This is a very natural datastructure, and
it appears in many settings. For instance, the parse tree of a natural language sentence, or of an
algebraic term, is a finite node labelled sibling ordered tree. An example of an XML document is
given in Figure 1.

2Usually, it is assumed that nodes can satisfy more than one label, but this is not important for us.

2

NVTI Nieuwsbrief 39

<note date=’10-Nov-2006’>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don’t forget about <i>me</i>

this weekend!</body>
</note>

note

to from heading body

i

Figure 1: Example XML document with skeleton

The two most important languages for manipulating XML data are the query language XQuery
and the transformation language XSLT. Here is an example of an XQuery query:

for $x in doc("notes.xml")//note
where $x/@date=’10-Nov-2006’
return <recipient>$x/to</recipient>

This query could be run on a document containing a collection of notes, where each note is of the
form described in Figure 1. The query then returns all recipients of notes sent on 10 november
2006, structured as XML using the <recipient> tag. The italic subexpressions are called path
expressions. They select elements from the document. XPath is the language of these path expressions.
It is a common fragment of XQuery and XSLT, and it is the topic of this paper.

In what follows, we will make one important simplifying assumption: when considering XML
documents, we will abstract away from the actual data in the XML document (i.e., the text in-between
the tags, and the attribute-value information). What is left is the ‘skeleton’ of the XML document: the
hierarchical structure and the XML tag labels of the nodes. This allows us to view XML documents
as nothing more than node labelled sibling ordered trees, where the node labels are the XML tags. In
the case of Figure 1, the skeleton is precisely the picture on the right (including the information of the
sibling order).

3 XPath 1.0 and its navigational core

XPath 1.0 was introduced as a language for addressing parts of an XML document. Inspired by Unix
paths, its expressions describe ways to travel through an XML document. XPath 1.0 is a very rich
language, in fact its technical specifications are about 30 pages long [7]. Since, in this paper, we
abstract away from the data content of XML documents and consider only the ‘skeleton’, we can
disregard much of the functionality of XPath 1.0. What is left is the navigational core, Core XPath
1.0, which was formally defined in [14]. Surprisingly, it turns out that Core XPath 1.0 is almost
identical to PDL. The only real differences are the following:

• While PDL in general is interpreted over arbitrary directed multi-graphs, in the case of Core
XPath 1.0 they are finite sibling ordered trees, i.e., XML documents. Correspondingly, there
are four atomic programs, corresponding to the four basic moves in the tree: child, parent,
previous-sibling and next-sibling. The node labels are simply the XML tags.

• The use of the reflexive transitive closure operator ∗ is restricted to atomic programs.

3

40 NVTI Nieuwsbrief

Besides these, there are some minor differences concerning notation and terminology. For instance,
the ‘program formulas’ of PDL are called ‘path expressions’ in XPath, and ‘state formulas’ are called
‘node tests’ or ’filter expressions’.

In presenting the syntax of Core XPath 1.0 below, we will cheat a bit: we use a slightly different
notation, to emphasize the connection with PDL. It should be noted, though, that there are linear
translations between the two. The syntax of Core XPath 1.0 is as follows:

Path expressions (defining binary relations over the domain of the tree):
α ::= child | parent | previous-sibling | next-sibling |

child∗ | parent∗ | previous-sibling∗ | next-sibling∗ |
self | α/β | α ∪ β | α[φ]

Node expressions (defining sets of nodes):
φ ::= p | ¬φ | φ ∧ ψ | 〈α〉 (for p an XML tag)

Two constructs require explanation, namely α[φ] and 〈α〉. The first is interpreted as a ‘filter’: α[φ]
defines the subrelation of α containing all pairs (x, y) of which y satisfies φ. The node expression 〈α〉
simply expresses that the node under evaluation is in the domain of the relation α. Thus, for example,
the path expression child[〈child〉] — in the official XPath notation child::*[child::*] — says
“go to a child that is not a leaf”. Likewise, the path expression child[note∧¬〈child[body]〉] — in the of-
ficial XPath notation child::note[not(child::body)], abbreviated as note[not(body)]
— says “go to a child with tag note that has no child with tag body”. Incidentally, note that, while
PDL supports expressions of the form 〈α〉φ, these can be expressed in Core XPath 1.0 as 〈α[φ]〉.

In practice, an XPath path expression α is used as follows: it is evaluated at a specified context
node x of a document D (typically the root), and yield a set of nodes RESULTD,x(α), consisting of
those nodes of D that can be reached from x by executing α. The XQuery query given in Section 2 is
a good example of this use of path expressions.

Complexity The close relation between Core XPath 1.0 and PDL has been exploited to obtain com-
plexity results for various tasks involving XPath expressions. For instance, the following results can
be obtained in this way:

Fact 3 (Query evaluation complexity). Given a Core XPath 1.0 path expression α, an XML document
D and a context node x, RESULTD,x(α) can be computed in linear time.

Fact 4 (Query containment complexity). The following problem is EXPTIME-complete: given Core
XPath 1.0 path expressions α and β, does RESULTD,x(α) ⊆ RESULTD,x(β) hold for all D and x?

Fact 3 follows directly from Fact 1. For Fact 4 this is not the case. It does not follow directly
from Fact 2 because the class of structures is different (an implication between two formulas may
hold on trees but not on arbitrary structures). Nevertheless, essentially the same (automata-theoretic)
techniques apply.

Expressive power One way to measure the expressive power of a query language is by relating it to
the expressive power of the logical language we know best: first-order logic. Edgar Codd proved for
instance, within the framework of the relational database model, that relational algebra has the same
expressive power as first-order logic. Since our XML documents are node labelled sibling ordered

4

NVTI Nieuwsbrief 41

trees, we consider a first-order language that has binary predicates <V and <H for the descendant
and following sibling relations, and a unary predicate for each XML tag. Call this language FOtree.

The path expressions of Core XPath 1.0 can be naturally compared to FOtree-formulas with two
free variables: a variable x standing for the context node and another variable y standing for the
retrieved node. We say that a path expression α is equivalent to an FOtree-formula φ(x, y) if for all
XML documents D and nodes d, e, it is the case that e ∈ RESULTD,d(α) if and only if D |= φ(d, e).
Likewise, the node expressions of Core XPath 1.0 can be naturally compared to FOtree-formulas with
one free variable.

Fact 5. Core XPath 1.0 is a proper fragment of FOtree.

The easy half of this results says that Core XPath 1.0 is a fragment of FOtree. This can be showed
by means of a linear translation from Core XPath 1.0 path expressions to FOtree-formulas in two free
variables and from Core XPath 1.0 node expressions to FOtree-formulas in one free variable. The
more difficult half of the result says that there are FOtree-formulas that are not equivalent to any Core
XPath 1.0 node or path expression. The until operator from Section 1 can be used here. In the case of
XML documents, there are four natural versions of until: upward, downward, leftward and rightward.
For instance, the downward version of until talks about descendants of a node: until↓(A,B) holds at
a node x iff ∃y.(x <V y ∧ A(y) ∧ ∀z(x <V z ∧ z <V y → B(z))). Notice how this immediately
shows that until↓ is FOtree-definable. Likewise for the other versions of until. On the other hand,
none of them can be expressed in Core XPath 1.0. A proof is given in [22], along the following lines:
there is a (linear) translation from Core XPath 1.0 node expressions to first-order formulas containing
only two variables. On the other hand, until↓(A,B) and the other versions cannot be expressed with
less than three variables (the latter can be shown using a variant of Ehrenfeucht-Fraı̈ssé games [10]).

Incidentally, recall from Section 1 that until queries can be expressed in PDL. However, this
requires the use of ∗ on non-atomic expressions (in particular, on expressions of the form α[φ] with
α ∈ {child, parent, previous-sibling, next-sibling}.

A precise characterization of the expressive power of Core XPath 1.0 in terms of a two-variable
fragment of FOtree was given in [22], based on similar results for temporal logics without until [11].

4 Two extensions of Core XPath 1.0

Soon after XPath 1.0 was introduced, users found that they need more expressive power. We will
discuss two directions in which one can expand XPath. One the one hand, the connection between
XPath and PDL naturally suggests extending XPath with an unrestricted transitive closure operator.
On the other hand, the W3C has introduced the 2.0 version of XPath, which extends XPath 1.0 in a
different direction, namely with intersection, complementation, and quantified variables.

A summary of most of the results described in this section (and more) can be found in Figure 2.
For a more detailed explanation of this diagram, cf. [26].

4.1 Regular XPath: adding the full transitive closure operator

The connection between XPath and PDL described above naturally suggests extending XPath 1.0 with
a reflexive transitive closure operator that operates on arbitrary (not only atomic) path expressions.
Indeed, there are various reasons for extending the language in this way [1]. The extension of Core
XPath 1.0 in which ∗ can be applied to arbitrary path expressions is called Regular XPath.

5

42 NVTI Nieuwsbrief

Figure 2: Hierarchy of extensions of Core XPath 1.0

Regular XPath is much more expressive
than Core XPath. For instance, the until
queries discussed in Section 3 can be ex-
pressed in it. As a matter of fact,

Fact 6. Regular XPath strictly extends
FOtree in expressive power.

There are two sides to this result.
Firstly, it says that Regular XPath can
express all FOtree-definable properties of
nodes and binary relation. This was
proved in [21] by an adaptation of a
proof of Kamp’s Theorem in temporal logic
(cf. Section 1). The second side of the
Fact 6 is that there are node expressions
and path expressions of Regular XPath that
have no FOtree equivalent. A simple ex-
ample is the path expession (child/child)∗,
which says “make an even number of child
steps”. It is well known that such prop-
erties cannot be expressed in first-order
logic, and it can be proved formally using
Ehrenfeucht-Fraı̈ssé games [10].

Even though Regular XPath is more expresssive than FOtree there are FOtree-formulas for which
the smallest equivalent Regular XPath expression is much longer. In fact, non-elementarily longer. (a
function f : N → N is said to be non-elementary if it grows faster than any tower of expontentials of
fixed height, as in 2(2(...n))).

No precise characterization is known of the expressive power of Regular XPath. There is, however,
a characterization of the extension of Regular XPath with loop. The loop construct allows us to test
whether a node is related to itself by a path expression. Formally, a node d satisfies loop(α), for α any
path expression, iff (d, d) belongs to the relation α. The extension Regular XPath with loop is called
Regular XPath≈. The following example illustrates the convenience of having loop in the language.

Example 1. Consider the following properties of nodes in a tree: “having an even number of descen-
dants”. This property can be expressed by a Regular XPath≈ node expression. To see this, first, let
next be shorthand for

child[¬〈previous-sibling〉] ∪ self[¬〈child〉]/(parent[¬〈next-sibling〉])∗/next-sibling

which defines the successor relation in the depth-first left-to-right ordering of the tree. A node satisfies
loop

(
(next/next)∗[¬〈child〉]/(parent[¬〈next-sibling〉])∗

)
iff it has an even number of descendants.

As a matter of fact, it is possible to express the same property in Regular XPath without the use
of loop. However, the solution is much less straightforward. The reader may consider it an exercise
to find the right expression.

The expressive power of Regular XPath≈ can be characterized in terms of a natural extension of
FOtree. Let FO∗

tree be the extension of FOtree in which, for each formula φ(x, y) with exactly two
free variables, φ∗(x, y) is also allowed as a formula, and it defines the transitive closure of the relation
defined by φ(x, y).

6

NVTI Nieuwsbrief 43

Fact 7. Regular XPath≈ has the same expressive power as FO∗
tree.

Again, there is a non-elementary succinctness gap: there are queries that can be expressed expo-
nentially more succinctly in FO∗

tree than in Regular XPath≈ [25].
Finally, let us say something about complexity. Given that Regular XPath≈ is much more expres-

sive than Core XPath 1.0, it is natural to ask whether the complexity goes up as well. Surprisingly,
this is not the case (up to a polynomial):

Fact 8. Query evaluation (in the sense of Fact 3) for Regular XPath≈ can still be performed in PTIME.

Fact 9. Query containment (in the sense of Fact 4) for Regular XPath≈ is still EXPTIME-complete.

Fact 8 follows again from known results about PDL [19] while Fact 9 is proved in [26].

4.2 Core XPath 2.0: adding intersection, complementation and quantified variables

When the W3C committee designed XPath 2.0, rather than adding the unrestricted reflexive transitive
closure operator, they decided to extend XPath 1.0 in another direction. We concentrate again on the
navigational core, Core XPath 2.0. It extends Core XPath 1.0 with the following new operations:

• An intersection operator on path expressions.

This allows us to write path expressions of the form α ∩ β, with the semantics “select all nodes
that can be reached from the current node both by α and by β”.

• A complementation operator on path expressions

This allows us to write path expressions of the form α− β, with the semantics “select all nodes
that can be reached from the current node by α and not by β”.

• Variables and quantifiers.

This allows us to write path expressions of the form for $i in Path1 return Path2, interpreted
as “assign to the variable $i some node reachable from the current node by Path1, and perform
Path2 under this variable assignment”.

With these additional operators, one can express for instance until queries. For instance, until↓(A,B)
can be expressed as follows (with child+ shorthand for child/child∗):

(child+[A]) − (child+[¬B]/child+). (1)

or, using quantified variables, for instance as follows:

for $i in self return child+[A ∧ ¬(parent+[B]/parent+[self is $i])] (2)

As a matter of fact, Core XPath 2.0 has full first-order expressive power [21]:

Fact 10. Core XPath 2.0 has the same expressive power as FOtree.

This time, there is no difference in succinctness between the two languages. Indeed, there are
linear translations between the two languages. This is because, basically, the quantified variables make
Core XPath 2.0 a notational variant of FOtree. This might seem like a good result (after all, being
able to express something succinctly is a good thing). However, it also has negative consequences. In
particular, Core XPath 2.0 inherits bad complexity results from FOtree:

7

44 NVTI Nieuwsbrief

Fact 11 (Query evaluation complexity). Query evaluation (in the sense of Fact 3) for Core XPath 2.0
is PSPACE-complete.

Fact 12 (Query containment complexity). Query containment (in the sense of Fact 4) for Core XPath
2.0 is non-elementary hard. Even Core XPath 1.0 extended with the complementation operator or
with a single quantified variable already has a non-elementary hard query containment problem, and
for the extension of Core XPath 1.0 with the intersection operator alone it is 2EXPTIME-complete.

See [26] for more information. Note that Fact 11 is concerned with the combined complexity of
the query evaluation problem, where the document and the path expression are both part of the input.
Following Vardi’s taxonomy [27], one could also consider the data complexity for Core XPath 2.0
query containment, where only the document is counted as part of the input and the path expression
is assumed to be fixed. The data complexity of Core XPath 2.0 query evaluation is PTIME.

Putting things together, we see that Core XPath 2.0 is less expressive than Regular XPath≈, but
has a higher computational complexity, due to the fact that it is more succinct.

Needless to say, the full XPath 2.0’s syntax is much richer than this navigational fragment. In fact,
its underlying data-model differs from that of XPath 1.0 in some respects, but that is beyond the scope
of this paper. An excellent introduction is [17].

5 An experiment in formulation

Thoughout this paper, until queries have been our running example. We saw that they cannot be ex-
pressed in XPath 1.0, but they can be expressed in Regular XPath using the reflexive transitive closure
operator, or in XPath 2.0 using either the complementation operator or quantified variables. In this
section, we look how these ways of expressing queries compare when executed on real XQuery sys-
tems (recall that XPath expressions are mostly used inside XQuery queries or XSLT transformations).

We created a simple experiment in which we express the vertical until query until(A,B) (i.e, over
the child relation) on XML-trees in a number of different styles. We ran these equivalent queries
on a large XML document (46MB) and recorded the times. The outcomes show a large variation in
processing times, varying from less than 10 to over a 1000 seconds and engine crashes.

It is difficult to draw conclusions from the experiment which can be translated into practical advice
to engine developers, besides the fact that query optimization can be useful. But the results hint at a
practical advice to the developers of XPath/XQuery: add the Kleene star to XPath. The Kleene style of
writing the until query outperforms all others; on talks we gave the majority of the audience predicted
it to be the winner of the three styles; it is a natural, procedural way of specifying the until query. But
it is very difficult to express in XQuery, in particular when compared to the simple formulation (3) in
Regular XPath.

The problem. Given a context node x, we want to compute the set of nodes that can be reached
from x along vertical until(A,B) paths. In Section 3 and 4 we have already seen different styles of
expressing this query.

The first style uses the Kleene star of Regular XPath (i.e., the reflexive transitive closure operator),
thus we call it the Kleene style: return all nodes reachable from the context node along the path

(child[B])∗/child[A]. (3)

The second style uses the path complementation operation of XPath 2.0. We call it the Tarski
style, because it uses the operations of Tarski’s relation algebra: return all nodes reachable from the

8

NVTI Nieuwsbrief 45

context node along the relation

(descendant[A]) − (descendant[¬B]/descendant). (4)

The third way of expressing the query, and probably the simplest one for a logician, is by using
first-order logic and the universal quantifier: for x the context node, return all y satisfying

x <V y ∧A(y) ∧ ∀z(x <V z ∧ z <V y → B(z)). (5)

Recall that <V is the descendant relation. In honour of Frege’s role in the historical development of
first-order logic, we call this the Frege style of writing the query. There are various ways of writing
this first-order formula in XPath 2.0. We will come back to this in a moment.

All three formulations describe the same binary relation.

From problem to query. Our aim is to compare the three styles of expressing until queries, by
running them on a number of XQuery engines for a concrete XML document, and recording the
processing times to find differences in performance.

We use an XML document from the Michigan XQuery benchmark [24] of 46MB and 728000
nodes. All elements in the document have the same label and attributes. We use one numeric attribute
that has randomly generated values from 0 to 3 to express the node conditions A and B. A is the
predicate condition [@aFour=3] and B is the predicate condition [@aFour=0].

The outcome of the query should describe the range of the binary relation. We set up the query so
that there are 16 “start-nodes”, each with many descendants. These nodes are all the nodes at depth
five in the XML tree and all queries start with the following piece of XQuery code

let $start := doc("mbench.xml")//*[@aLevel=5] return,

or for $start in doc("mbench.xml")//*[@aLevel=5] return

The query outcomes are sequences of elements that stand in the specified relation to the start-nodes.
The results are ordered in the document order.

In this way, we came up with 7 equivalent queries U1–U7, specified in the Appendix. U1 and
U2 are in the Kleene style and in the Tarski style, respectively. Since there are many natural ways of
expressing the Frege style in XPath 2.0 and we did not know any good criterion of picking a single
one, the last 5 queries are all different variants of the Frege style.

As an example, we give the Tarski-style query, U2, copying (4):

let $start := doc("mbench.xml")//*[@aLevel=5]
return
$start//*[@aFour=3] except $start//*[not(.[@aFour=0])]//*

Note that //* is an XPath abbreviation for the descendant relation and except is the XPath way
of writing complementation. Knowing this, the similarity with (4) is clear.

As another example, we show U4, one way of encoding the Frege style in XPath:

for $start in doc("mbench.xml")//*[@aLevel=5]
for $end in $start//*[@aFour=3]
return

$end[every $inbetween in $start//*[.//*[. is $end]]
satisfies $inbetween[@aFour=0]]

9

46 NVTI Nieuwsbrief

 1

 10

 100

 1000

U7U6U5U4U3U2U1

Lo
g

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
)

Query

Execution times of until queries on four engines. Document size 46MB.

SaxonB
Qizx

MonetDB_my
Galax

Figure 3: Processing times of 7 equivalent formulations of the until query for SaxonB, Qizx/Open,
MonetDB/XQuery and Galax, on the Michigan benchmark document of 46MB, with a timeout of
1000 seconds.

This variant uses the for-return construct and the universal quantification every available in
XPath 2.0.

The Kleene style query U1 cannot be expressed in XPath 2.0. Luckily, XQuery supports user-
defined recursive functions, and thus we could express the query by replacing the Kleene star by a
reference to a user-defined function. In this way, we could still compare it to the other styles.

Results. We ran the queries U1–U7 on the following four XQuery engines:

• SaxonB version 8.6.1 [18]

• Qizx/Open version 1.0 [3]

• MonetDB/XQuery version 0.10 [23], 32 bit compilation.

• Galax version 0.5.0 [12]

MonetDB/XQuery is an full-fledged database management system with an XML/XQuery front-end,
while the other engines are stand-alone query processors.

The experiment is run with the help of XCheck3 [2], a testing platform for XQuery engines. We
used an Intel(R) Pentium(R) 4 CPU 3.00GHz, with 2026MB of RAM, running Linux version 2.6.12.
For the Java applications (SaxonB and Qizx/Open) 1024MB memory size was allocated. We run each
query 2 times and we output the results for the last “warmed-up” run. The times reported are CPU
times measuring the complete execution of a query including loading and processing the document
and outputting the result.

3http://ilps.science.uva.nl/Resources/XCheck/

10

NVTI Nieuwsbrief 47

http://ilps.science.uva.nl/Resources/XCheck/

The results are given in Figure 3. We remark that query execution was stopped when an engine
took more than 1000 seconds to output the results. An empty engine bar indicates an engine crash.

The Kleene style query U1 performs best on all of the four engines. The Tarski variant, query U2,
does reasonably well on 3 out of 4 engines, with Galax having some troubles, but at least finishing
before the timeout limit. The Frege style queries U3, U4, and U5 are really problematic for all the en-
gines. Only SaxonB finishes before the 1000 seconds limit time, Qizx/Open and Galax pass the limit,
while MonetDB/XQuery crashes on all three queries. We believe the reason for this bad performance
is the large amount of intermediate results generated during the execution. This intermediate results
are avoided in the queries U6 and U7, which use the ancestor axis for navigating upwards in the
tree and checking the until condition B on the paths that start with a starting-node and end on a node
satisfying the until condition A.

6 In conclusion

The developments around XPath are a nice example of interaction between formal theory and applied
computer science. Core XPath 1.0 turned out to be (by accident?) a modal logic, and equivalent
to a well defined fragment of first order logic. One of the design goals of XPath 2.0 was to make
it as expressive as first-order logic. Regular XPath is an extension of XPath in which Propositional
Dynamic Logic and formalisms coming from SGML (caterpillar expressions [6]) and semi-structured
data (regular path expressions [1]) nicely blend together.

Hierarchies of formalisms for describing and querying XML-trees form an active topic of research
at the moment. Typical questions concern relative expressive power, succinctness, complexity, and
various types of translations between different formalisms. There are still many hard nuts to crack
(for instance, the question marks in Figure 2).

One potential issue of concern is that we have abstracted away too much from the XML reality
by considering XML documents as node-labeled sibling ordered trees. Nodes in XML documents
can have attributes with typed values (strings, integers, etc), and atomic data values, and these are
neglected in the work we have discussed. One of the reasons is that languages that can speak about
these data values quickly become undecidable. Some work has been done in finding well-behaved
fragments of XPath with limited access to data values [5], but this is not yet of applicational value.
Here input from another field of modal logic is likely to be helpful, namely the work on description
logics with concrete domains [20].

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the web. Morgan Kaufman, 2000.

[2] L. Afanasiev, M. Franceschet, M. Marx, and E. Zimuel. XCheck: a Platform for Benchmarking
XQuery Engines. In Proceedings of VLDB, Demo, Seoul, Korea, September 2006. ACM Press.

[3] Axyana software. Qizx/open. An open-source Java implementation of XQuery. http://www.
axyana.com/qizxopen, 2006.

[4] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2001.

[5] M. Bojańczyk, C. David, A. Muscholl, Th. Schwentick, and L. Segoufin. Two-variable logic on
data trees and XML reasoning. In PODS, pages 10–19, 2006.

11

48 NVTI Nieuwsbrief

http://www.axyana.com/qizxopen
http://www.axyana.com/qizxopen

[6] A. Brüggemann-Klein and D. Wood. Caterpillars, context, tree automata and tree pattern match-
ing. In G. Rozenberg and W. Thomas, editors, Proceedings of DLT ’99: Foundations, Applica-
tions and Perspectives, pages 270–285. World Scientific Publishing, Singapore, 2000.

[7] J. Clark and S. DeRose. XML Path Language (XPath). http://www.w3.org/TR/xpath.

[8] E.M. Clarke and B.-H. Schlingloff. Model checking. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, pages 1367–1522. Elsevier Science Publishers, 2000.

[9] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the alternation-free
modal mu-calculus. Form. Methods Syst. Des., 2(2):121–147, 1993.

[10] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

[11] K. Etessami, M. Vardi, and Th. Wilke. First-order logic with two variables and unary temporal
logic. In Proc. LICS’97, pages 228–235, 1997.

[12] M. Fernández, J. Siméon, C. Chen, B. Choi, V. Gapeyev, A. Marian, P. Michiels, N. Onose,
D. Petkanics, C. Ré, M. Stark, G. Sur, A. Vyas, and P. Wadler. Galax. The XQuery implementa-
tion. http://www.galaxquery.org, 2006.

[13] M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences, 18:194–211, 1979.

[14] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries. In
VLDB’02, 2002.

[15] J.Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis, M.Y. Vardi, and V. Vianu. On the unusual
effectiveness of logic in computer science. The Bulletin of Symbolic Logic, 7(2):213–236, 2001.

[16] J.A.W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California,
Los Angeles, 1968.

[17] M. Kay. XPath 2.0 Programmer’s Reference. Wrox, 2004.

[18] M. H. Kay. SaxonB. An XSLT and XQuery processor. http://saxon.sourceforge.
net, 2006.

[19] M. Lange. Model checking propositional dynamic logic with all extras. Journal of Applied
Logic, 4(1):39–49, 2005.

[20] C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis, Teaching and
Research Area for Theoretical Computer Science, RWTH Aachen, 2002.

[21] M. Marx. Conditional XPath. ACM Transactions on Database Systems, 30(4):929–959, Decem-
ber 2005.

[22] M. Marx and M. de Rijke. Semantic Characterizations of Navigational XPath. ACM SIGMOD
Record, 34(2):41–46, 2005.

[23] MonetDB/XQuery. An XQuery Implementation. http://monetdb.cwi.nl/XQuery,
2006.

12

NVTI Nieuwsbrief 49

http://www.galaxquery.org
http://saxon.sourceforge.net
http://saxon.sourceforge.net
http://monetdb.cwi.nl/XQuery

[24] K. Runapongsa, J. Patel, H.V. Jagadish, Y. Chen, and S. Al-Khalifa. The Michigan Benchmark:
A Microbenchmark for XML Query Processing Systems. In Proceedings of EEXTT, pages 160–
161, 2002.

[25] B. ten Cate. The expressivity of XPath with transitive closure. In Proceedings of PODS’06,
pages 328–337, 2006.

[26] B. ten Cate and C. Lutz. The complexity of query containment in expressive fragments of XPath
2.0. Under submission. Available from http://staff.science.uva.nl/∼bcate.

[27] M.Y. Vardi. The complexity of relational query languages (extended abstract). In Proceedings
of STOC ’82, pages 137–146, New York, NY, USA, 1982. ACM Press.

A Until queries

The following equivalent queries were used in the experiment reported in Figure 3. The id attribute
of the query element gives the query name used in the histogram; the description element gives a
short query description; and the syntax element contains the actual query in XQuery.

<queries>

<query id="U1">
<description>Use recursive function</description>
<syntax engine="all"><![CDATA[

declare namespace my=’my-functions’;
declare function my:until($input as node()*)
{
for $i in $input return
($i/child::*[@aFour=3],my:until($i/child::*[@aFour=0]))

};
let $start := doc("mbench.xml")//*[@aLevel=5]
return
my:until($start)

]]></syntax>
</query>
<query id="U2">
<description>Use except</description>
<syntax engine="all"><![CDATA[

let $start := doc("mbench.xml")//*[@aLevel=5]
return
$start//*[@aFour=3] except $start//*[not(.[@aFour=0])]//*

]]></syntax>
</query>
<query id="U3">
<description>Forward every with if </description>
<syntax engine="all"><![CDATA[

13

50 NVTI Nieuwsbrief

for $start in doc("mbench.xml")//*[@aLevel=5],
$end in $start//*[@aFour=3]

return
if (every $inbetween in $start//*[.//*[. is $end]] satisfies $inbetween/@aFour=0)
then $end
else ()

]]></syntax>
</query>
<query id="U4">
<description>Forward as in the usual FO writing of until but now with a predicate
</description>
<syntax engine="all"><![CDATA[

for $start in doc("mbench.xml")//*[@aLevel=5],
$end in $start//*[@aFour=3]

return
$end[every $inbetween in $start//*[.//*[. is $end]] satisfies
$inbetween/@aFour=0]

]]></syntax>
</query>
<query id="U5">
<description>Forward empty with if </description>
<syntax engine="all"><![CDATA[

for $start in doc("mbench.xml")//*[@aLevel=5],
$end in $start//*[@aFour=3]

return
if (empty($start//*[not(.[@aFour=0])]//*[. is $end]))
then $end
else ()

]]></syntax>
</query>
<query id="U6">
<description>Backward with every</description>
<syntax engine="all"><![CDATA[

for $start in doc("mbench.xml")//*[@aLevel=5]
return
$start//*[@aFour=3][every $inbetween in ancestor::*[ancestor::*[. is $start]]
satisfies $inbetween/@aFour=0]

]]></syntax>
</query>
<query id="U7">
<description>Backward with predicate</description>
<syntax engine="all"><![CDATA[

for $start in doc("mbench.xml")//*[@aLevel=5]
return

14

NVTI Nieuwsbrief 51

$start//*[@aFour=3][not(ancestor::*[not(.[@aFour=0])]/ancestor::*[. is $start])]

]]></syntax>
</query>

</queries>

15

52 NVTI Nieuwsbrief

Reasoning about recursive processes in shared-variable
concurrency

F.S. de Boer

CWI, Amsterdam, Netherlands
F.S.de.Boer@cwi.nl

1 Introduction

The main contribution of this paper is a sound and complete proof method for concurrent sys-
tems that consist of recursive first-order processes.These processes can be created dynamically
and interact via shared variables.

Our proof method consists of annotating each recursive process with assertions which ex-
press certain properties of the shared variables and its own local variables. Such an annotated
process is locally correct if certain verification conditions hold which characterize its sequen-
tial (and deterministic) flow of control. On the other hand, reasoning about the interaction
between processes involves a global interference freedom test. This test is modeled after the
corresponding test in [6] for concurrent systems consisting of a statically fixed number of
processes which interact via shared variables.

The main contribution of this paper is the generalization of the basic method described
in [6] to recursive processes and dynamic process creation. This paper also provides a formal
justification of this generalization in terms of soundness and completeness proofs.

2 Recursive processes with shared variables

A program consists of a set of (parameterized) first-order process definitions

p(u1, . . . , un) = S

Here p denotes the name of the process, u1, . . . , un are its (formal) parameters, and S denotes
its body. This paper abstracts from the concrete syntax of S which describes a sequential
and deterministic behavior. Basic statements include the usual assignments and (recursive)
process calls

[create] p(e1, . . . , en)

Here e1, . . . , en is the list of actual parameters which are used to instantiate the formal param-
eters of p. The keyword ’create’ is optional. It indicates the dynamic creation of the process
p(e1, . . . , en). The process executing this create statement continues its own execution, i.e., it
does not wait for the process p(e1, . . . , en) to terminate. On the other hand, the execution of
a call p(e1, . . . , en) itself consists of adding it to the call stack of the executing process. Oper-
ationally, a process is modeled as a stack of closures. A closure is a statement together with
its local context specifying the values of the local variables. The process itself is executing
the closure on top of the call stack, which is also called its active closure. All other closures
represent pending calls.

NVTI Nieuwsbrief 53

A ’snapshot’ Π of a concurrent execution consists of a set of processes and a global
assignment of the shared variables. A global transition relation

Π → Π ′

describes that the execution of an atomic statement by one process in Π results in the global
state Π ′. The execution of a call p(e1, . . . , en) generates an active closure which consists of
the body of p and the local context obtained by assigning the values of the actual parameters
to the formal parameters of p. This active closure is added as a new process in case of the
execution of a corresponding create statement, otherwise it is pushed unto the call stack of
the executing process.

Assertions are used to annotate the interleaving points of statements. An assertion P is
evaluated in a configuration. A configuration γ consists of a global assignment of the shared
variables and a local context. By

γ |= P

is denoted that the configuration γ satisfies the assertion P . An assertion is valid, denoted by
|= P , if γ |= P , for every configuration γ.

For a statement S,
WP(S, P)

denotes the weakest precondition which guarantees that every terminating execution of S
satisfies P . Formally, this weakest precondition is semantically defined in terms of a structural
operational semantics for transitions

〈S, γ〉 → γ′

where γ denotes an initial configuration and γ′ denotes the resulting configuration of the
execution of S. In this local semantics a create statement is simply modeled by a ’skip’
statement. Given such an operational semantics, the following definition is standard.

γ |= WP(S, P) if and only if γ′ |= P , for 〈S, γ〉 → γ′

Example: parallel prime sieve This section concludes with a parallel program for generating
primes. This program includes a shared variable ’nat’ for generating the natural numbers.
The process ’sieve(prime)’ checks whether ’nat’ is divisible by its formal parameter ’prime’,
which will denote a prime number. Synchronization between sieve processes is managed by the
shared variable ’found’ which stores the set of found prime numbers and the shared variable
’passed’ which stores those numbers for which ’nat’ has passed the test successfully.

54 NVTI Nieuwsbrief

sieve(prime)=
old:= nat;
if prime | old
then synchronized

begin
if old=nat
then nat:=nat+1;

passed:=∅
fi
end

else synchronized
begin
if old=nat
then passed:= passed∪{prime} fi;
if passed=found
then found:=found∪{nat};

passed:=∅
create sieve(nat);
nat:=nat+1

fi;
end

fi;
sieve(prime)

The local variable ’old’ is used to ’freeze’ the value of ’nat’. The keyword ’synchronized’
indicates a statement which cannot be interleaved by any other synchronized process. If ’old’
does not pass the test, ’nat’ can be incremented, only if ’old’ still holds the current value of
’nat’. A corresponding new round is initialized by setting the set ’passed’ to the empty set.
If ’old’ does pass the test, this is recorded by adding ’prime’ to the set ’passed’ only if ’old’
still holds the current value of ’nat’. Subsequently, it is tested whether the two sets ’passed’
and ’found’ are equal, where ’found’ stores the found prime numbers. If so, we got another
prime and a corresponding sieve process is created. Additionally, the search for a new prime
is initiated by incrementing ’nat’ , updating ’found’ and resetting ’passed’.

The execution of the program starts with the initialization

nat:=3; found:=∅; passed:=∅

and the creation of the initial sieve process

sieve(2)

Clearly, the shared variables ’found’ and ’passed’ can be replaced by corresponding coun-
ters. However, the additional information allows to express correctness by the simple global
invariant

found⊆Primes

which states that ’found’ only stores prime numbers (’Primes’ denotes the set of prime num-
bers). In order to establish this invariant the following additional information is needed:

Max(found)≤nat≤Nextpr(found)

NVTI Nieuwsbrief 55

which states that ’nat’ is in between the greatest prime number found and the next prime
number. Furthermore the following information about the sieve process itself is needed:

passed⊆ {n : n 6 | nat} ∩ found

Using the proof method described in the next section it is a straightforward exercise to
establish the global invariant and the local invariant

prime∈found

3 Proof-outlines

A proof-outline is a correctly annotated program. An annotation of a program associates with
every sub-statement S (appearing in a process body) a precondition Pre(S) and a postcon-
dition Post(S). Validation of verification conditions establish the correctness of an annotated
program. First the verification condition which establishes that assertions are interference
free is introduced. Then the verification conditions which establish that assertions specify
correctly the sequential control flow are discussed.

Interference freedom test

In order to characterize the interference between different processes it is assumed that each
process has a distinguished local variable ’id’ which is used for its identification. How unique
process id’s are generated are described in the next section.

An assertion P is defined to be invariant over the execution of a statement S by a different
process if the following verification condition holds:

|= (P ∧ Pre(S) ∧ id 6= id′) → WP(S, P)

For notational convenience, it is implicitly assumed that the local variables of P and Pre(S)
are named apart by ’priming’ the local variables of P . Note that this includes the distinguished
local variable ’id’, which is thus renamed in P by ’id′’.

The above verification condition models the situation that the execution of the process
denoted by the fresh local variable ’id′’ is interleaved by the execution of the statement S
by the process denoted by the distinguished local variable ’id’. That we are dealing with two
different precesses is simply described by the disequality id 6= id′.

Example 1. In example 3 a shared variable ’lock’ is introduced to reason about synchronized
statements. This variable stores the identity of the process that owns the lock. As in Java the
execution of synchronized statement cannot be interleaved by the execution of a synchronized
statement by another process. That is, every synchronized statement is characterized by the
invariant

id=lock

With this additional information annotations of the synchronized statements are trivially free
from interference: For any assertions P and Pre(S) such that P implies id′ = lock and Pre(S)
implies id = lock, respectively, it is the case that

|= (P ∧ Pre(S) ∧ id 6= id′) → WP(S, P)

because the antecedent is inconsistent.

56 NVTI Nieuwsbrief

Local correctness

An annotated program is locally correct if the verification conditions hold which characterize
the sequential flow of control within one process. We have the standard verification condi-
tions which characterize control structures like sequential composition, choice, and iteration
constructs.

Process calls The discussion is restricted to process calls

p(e1, . . . , en)

where the actual parameters e1, . . . , en are not affected by the call itself. Furthermore, it is
assumed that the formal parameters of the process p are read-only. Given such a call parameter
passing is simply modeled by the sequence of assignments

u1 := e1; . . . , un := en

Below this sequence of assignments is abbreviated by ū := ē.
Let S denote the body of the process p. The following verification condition validates the

precondition P of the call p(e1, . . . , en):

|= P → WP(ū := ē,Pre(S))

Here it is assumed that the local variables of the precondition Pre(S) of the process body
only include the formal parameters of the process p and the distinguished local variable ’id’.
Note that the local variable ’id’ thus may occur both in the precondition P of the call and the
precondition Pre(S) of process body. We do not need to distinguish these different occurrences
because the local variable ’id’ in both preconditions denotes the same process executing the
call.

Example 2. Consider the precondition

lock=id∧balance≥amount

of a call

withdraw(amount)

of a synchronized process ’withdraw’. This precondition states that the executing process
denoted by ’id’ owns the lock (and that the value of the shared variable ’balance’ is greater
or equal to that of the local variable ’amount’). The above precondition implies

WP(u := amount, lock = id ∧ balance ≥ u)

Note that the process therefore still owns the lock when executing the body of ’withdraw’.

Furthermore, the following verification condition validates the postcondition Q of a call
p(e1, . . . , en):

|= WP(ū := ē,Post(S)) → Q

As above, it is assumed that the local variables of the postcondition Post(S) only include the
formal parameters of the process p and the distinguished local variable ’id’. Note that since
the formal parameters are read-only and the actual parameters are not affected by the call
itself, we can restore the values of the formal parameters by the assignment ū := ē.

NVTI Nieuwsbrief 57

Example 3. Consider the postcondition

lock = id ∧ balance = old(balance)− u

of the body of the synchronized process ’withdraw’. The expression ’old(balance)’ denotes the
’old’ value of the (shared) variable, i.e., its value at ’call time’. We have that

WP(u := amount, lock = id ∧ balance = old(balance)− u)

reduces to the postcondition

lock = id ∧ balance = old(balance)− amount

of the corresponding call. This postcondition thus implies that the executing process keeps
the lock.

Auxiliary variables

In general to prove the correctness of a program we need auxiliary variables which are used
to describe certain properties of the flow of control.

Example 4 (Mutual exclusion). Consider the process

cs()= P(sem);S;V(sem)

where sem is a global shared binary semaphore (initialized to 0). In order to prove that no
two processes are executing the critical section S, a shared variable ’in’ is introduced which
stores the set of processes that are in their critical section (it is initialized to the empty set).
The process is extended as follows:

cs()= [P(sem);in:=in∪{id}];S;[V(sem);in:=in\{id}]

The brackets are used to indicate statements which are assumed to be executed atomically,
that is without interleaving. Note that without loss of generality we can indeed assume that
between acquiring (or releasing) the semaphore and the corresponding update of the auxiliary
variable no other processs are interleaved.

Mutual exclusion then can be expressed by the assertion Mutex defined by

|in| = sem ∧ 0 ≤ sem ≤ 1

This assertion is introduced as an invariant of the extended process which annotates all its
interleaving points, that is, the start and end of its extended body, and the start and end of
the critical section S.

For the proof of local correctness of the annotation the following (standard) characteri-
zation of the weakest precondition of a postcondition Q (of the operations for acquiring and
releasing the semaphore) is used:

WP(P(sem), Q) = (sem = 0 → Q[1/sem])

and
WP(V(sem), Q) = (sem = 1 → Q[0/sem])

58 NVTI Nieuwsbrief

Local correctness of the invariant Mutex then is expressed by the verification conditions

|= Mutex → WP(P(sem); in := in ∪ {id},Mutex)

and
|= Mutex → WP(V(sem); in := in \ {id},Mutex)

Note that these local verification conditions which establish Mutex as an invariant of the
extended process, also (trivially) imply the verification conditions for the interference freedom
test. In other words, using a local invariant like Mutex makes the interference freedom test
redundant.

Auxiliary variables are also used to describe the semantics of creating a process and high-
level synchronization constructs.

Creating a process In order to describe the specific semantics of process creation a shared
variable ’c’ is introduced which counts the number of created processes. A create statement

create p(e1, . . . , en)

is transformed by
c := c + 1; create p(e1, . . . , en, c)

where the additional actual parameter corresponds with the distinguished local variable ’id’
exported as a formal parameter of the process p.

Given a precondition P of above create statement, the precondition Pre(S) of the body
S of the process p is validated by the verification condition

|= P → WP(ū := ē,Pre(S))

where ū := ē contains the assignment ’id := c’. Note that in order to avoid name clashes we
have to rename the distinghuised local variable id in P because now it denotes a different
process.

On the other hand, the postcondition Q of a create statement is simply validated by the
verification condition

|= P → Q

where P denotes its precondition.

Synchronized statements In order to describe the specific semantics of a synchronized state-
ment

synchronized S

an auxiliary shared variable ’lock’ is introduced which stores the identity of the process
owning the lock. Since a process releases the lock only when it has finished executing its
synchronized statements, we also need an auxiliary shared variable that counts the number of
active synchronized statements in a process. Every synchronized statement S is then prefixed
with an await statement

await lock=id∨ lock=0 do
count:=count+1;lock:=id
od

NVTI Nieuwsbrief 59

The boolean condition states that either the process already owns the lock or the lock is not
yet initialized (i.e., is ’free’), assuming that zero is not used as a process id’s.

On the other hand, every synchronized statement ends with the execution of the await
statement

await true do
count:=count-1; if count=0 then lock:=0 if
od

The notion of proof outlines is extended with the following standard verification condition
for await statements

|= (P ∧ b) → WP(S, Q)

where P and Q denote the precondition and the postcondition of the await statement, b
denotes its boolean condition and S denotes its main body.

Since the evaluation of the boolean guard of an await-statement and the execution of its
body are assumed to be atomic we only need to apply the interference freedom test to the
pre- and postcondition of the await-statement itself.

Example 5 (Wait and notify). Like in Java, a process which owns the lock can release it by
executing the ’wait’ statement. It has to wait until another process owning the lock calls the
’notify’ statement. In order to describe the semantics of this mechanism an auxiliary shared
variable ’wait’ is introduced which is used to store the set of processes waiting for its lock.
The semantics of the wait statement then is described by the following code

if lock=id
then lock:=0;wait:=wait∪{id}
else abort
fi;
await lock=0 ∧ id6∈ wait
do lock:=id od

This statement first checks whether the process owns the lock. If so, the process simply releases
the lock and is added to the set of waiting processes. If the process does not own the lock
execution is aborted. The subsequent await statement waits for the lock to be free and for
the process to be removed from the set of waiting processs.

The semantics of the notify statement, which involves an arbitrary choice of the process
to be notified, is described by

if lock=id
then wait:=wait \{any(wait)}
else abort
fi

Here ’any’ is a set operation that satisfies the axiom

any(wait)∈wait

Logically it is a ’skolem’ function.

60 NVTI Nieuwsbrief

In general, auxiliary variables can be introduced as local variables and as shared variables.
Assignments to auxiliary variables may not affect the flow of control of the given program. It is
important to note that auxiliary variables are also allowed as additional formal parameters of
process definitions. Such auxiliary variables can be used to reason about invariance properties
of process calls.

Example 6 (Faculty function). Consider for example the following recursive process for
computing the faculty function.

fac()=
if x>0
then x:=x-1;fac();x:=x+1;y=y*x
else y:=1
fi

Here ’x’ and ’y’ are shared variables. Upon termination ’y’ stores the faculty of the value
stored by ’x’. In order to prove that the value of ’x’ upon termination equals its old value, a
formal parameter ’u’ is introduced and the process is extended by

fac(u)=
if x>0
then x:=x-1;this.fac(u-1);x:=x+1;y=y*x
else y:=1
fi

We then can express the above invariance property by introducing the assertion ’u=x’ both
as precondition and the postcondition of the process body. This specification of the process
body can be validated by introducing ’u=x+1’ as the precondition and the postcondition of
the recursive call. We have the following trivial verification conditions for process invocation
and return

|=u=x+1→u-1=x and |=u-1=x→u=x+1

where the assertion ’u-1=x’ results from replacing the formal parameter ’u’ in ’u=x’ by the
actual parameter ’u-1’.

It is of interest to note that the use of auxiliary variables as additional formal parameters
in reasoning about invariance properties of recursive calls, differs from the standard Hoare
logic of recursive procedures which requires certain extra axioms and rules (see [1]).

4 Soundness and completeness

In this section soundness and completeness proofs are sketched. These proofs are based on a
formal semantics sketched in the introduction. This structural operational semantics defines
a transition relation on global states. A global state Π of a program consists of a set of
processes, a process being represented as a stack of closures, and a global assignment of the
shared variables. The details of the definition of the global transition relation

Π → Π ′

NVTI Nieuwsbrief 61

which represents the execution of an atomic statement by one process in Π resulting in the
global state Π ′, are straightforward and omitted.

For notational convenience only, it is assumed throughout this section that every inter-
leaving point of the given program is uniquely labeled. Such labels are denoted by l, l′,
By

l : S : l′

a statement S is denoted with its start and end labeled by l and l′, or the label l itself
(’: S : l′’ thus being optional). A label on its own marks the termination of a process body.
The assertion annotating an interleaving point l is denoted by @l.

Soundness

Let π be an annotated program. A global state Π satisfies an annotated program π, denoted
by

Π |= π

if for every process in the global state Π with active closure (l : S : l′, τ), we have

γ |= @l

where γ denotes the configuration consisting of the global assignment of Π and the local
context τ . Roughly, a global state satisfies an annotated program if every process satisfies the
assertion annotating the statement of its active closure.

Theorem 1 (Soundness). For any correctly annotated program π (possibly extended with
auxiliary variables),

Π |= π and Π → Π ′ implies Π ′ |= π

Roughly, this theorem states the invariance of the assertions of a correctly annotated
program. The proof involves a straightforward but tedious case analysis of the computation
step.

Completeness

Conversely, completeness can be established by proving correctness of an extended program
annotated with so-called reachability predicates. These predicates are introduced in [2] and
[5], and adapted to recursive processes with shared variables as follows. Given a program, for
every interleaving point l the predicate @l is defined by

γ |= @l if there exists a reachable global state Π that realizes the global assignment of
γ and that contains a process with an active closure (l : S : l′, τ), where τ is the local
context of γ.

A global state Π is reachable if there exists a partial computation

Π0 →∗ Π

starting from a fixed initial global state Π0. Here →∗ denotes the reflexive, transitive closure
of →.

62 NVTI Nieuwsbrief

Using encoding techniques (as for example described in [7]) it can be shown that the above
reachability predicates can be expressed in the assertion language.

A straightforward though tedious case analysis establishes that a program annotated with
the above reachability predicates is locally correct. The main case of interest is a proof of the
verification condition

|= WP(ū := ē,@l) → @l′

for validating the postcondition of a (recursive) process call p(e1, . . . , en): the label l marks
the end of the body of process p and l′ the termination of the call. Parameter passing is
modeled by the sequence of assignments abbreviated by ū := ē. In order to validate this
verification condition every process definition is extended with an additional formal parameter
which stores the local context of the call and an additional parameter for passing the label
identifying the call. The local context of the call is stored in an array. The additional formal
parameters are denoted by ’con’ and ’lab’. In order to initialize the local context of the body
of a process (to be passed in subsequent calls), the following initialization is added:

mycontext := {u1, . . . , un, con, lab}

The local variable ’mycontext’ of the body of a process thus stores (a pointer to) the array
of values of its formal parameters including the additional parameters ’con’ and ’lab’ which
store the local context and label of the corresponding call. A call p(e1, . . . , en) with label l′ is
then extended by

p(e1, . . . , en,mycontext, l′)

The additional parameters ensure that the predicate WP(ū = ē,@l) indeed describes the
return of the process p to the given call. To see this, let

γ |= WP(ū = ē,@l)

where ū := ē now includes the additional assignments ’con:=mycontext’ and ’lab:=l′’. It
follows that

γ′ |= @l

where γ′ results from the execution of the statement ū = ē in γ. By the above definition of
the reachability predicates it follows that there exists a partial computation

Π0 →∗ Π ′

that realizes the global assignment of γ′ (which equals that of γ) and that contains an active
closure (l, τ ′) which indicates the termination of the body of process p (τ ′ denotes the local
context of γ′). Since

τ ′(con) = τ(mycontext) and τ ′(lab) = l′

we know that Π ′ contains the process

· · · (l′ : S : l′′, τ)(l, τ ′)

where S denotes the continuation of the given call (whose termination is marked by l′). Let

Π ′ → Π

NVTI Nieuwsbrief 63

be the computation step which pops the closure (l, τ ′) from the above call stack. Since Π also
realizes the global assignment of γ it is the case that

γ |= @l′

Remains to show that reachability predicates are interference free. More specifically, we
have to show that for any interleaving points l and l′, with l marking the start of an atomic
statement S, we have

|= (@l′ ∧@l ∧ id 6= id′) → WP(S, @l′)

Roughly, this verification condition states that if one process reaches l′ and another process
reaches l, then l′ is still reachable after the execution of the statement S. This follows trivially if
there exists one computation where both processes reach l′ and l at the same time. However,
in general this is not the case, e.g., the reachability of l′ may require a scheduling of the
processes which is incompatible with the reachability of l.

Example 7 (Scheduling). Consider the following process

race()=
synchronized
begin u:=b;

if b then b:=false fi
end;
if u then l1 : S1 else l2 : S2 fi

Here ’u’ is a local variable and ’b’ is a shared variable. Let the main process of the program
initialize ’b’ to ’true’ and then simply create two instances of the above process. Let γ be a
configuration such γ(b) = false, γ(u) = γ(u′) = true, and γ(id) and γ(id′) are two different
instances of the process p (the local variables ’u’ and ’id’ are renamed in the predicate @l′1
by the fresh local variables u′ and id′). It is easy to see that γ |= @l′1 ∧@l1. But clearly there
exists no reachable global state in which both processes are at l1 at the same time.

Therefore a global shared auxiliary variable ’sched’ is introduced which records the schedul-
ing of the processes. Every read or write operation which involves access to the global as-
signment of the shared variables is extended with an update which adds the identity of the
executing process.

Example 8. Returning to the above example, note that this additional scheduling information
implies that

|= (@l′1 ∧@l1 ∧ id 6= id′) → false

Note that @l′1 implies that ’sched’ stores the process denoted by ’id′’ first, whereas @l1 implies
that ’sched’ stores the process denoted by the distinguished local variable ’id’ first.

Interleaving of the local computations of the processes, i.e., computations which only
access the local context of the active closures and which do not access the global assignment
of shared variables , does not affect the global computation. More specifically, the variable
’sched’ enforces the following confluence property of the global transition relation.

64 NVTI Nieuwsbrief

Lemma 1 (Confluence). Let π be a program extended with the auxiliary variable ’sched’
for recording the scheduling of processes, as described above. Furthermore, let the global states
Π and Π ′ assign the same value to the variable ’sched’. It follows that if

Π0 →∗ Π and Π0 →∗ Π ′

then there exists a global state Π ′′ such that

Π →∗ Π ′′ and Π ′ →∗ Π ′′

Furthermore, these partial computations only consist of local computations steps which do not
involve (read or write) access to the global assignment of the shared variables.

This lemma holds because processes are assumed to be deterministic, i.e., the only source of
nondeterminism is interleaving. The following theorem states that the reachability predicates
are interference free.

Theorem 2. For any labeled statements l : S and l′ : S′ of a program extended with the
auxiliary variable ’sched’ we have

|= (@l′ ∧@l ∧ id 6= id′) → WP(S, @l′)

Proof. Let
γ |= @l′ ∧@l ∧ id 6= id′

By definition of the reachability predicates @l′ and @l there exist partial computations

Π0 →∗ Π and Π0 →∗ Π ′

starting from a fixed initial global state Π0, such that (l : S, τ) is the active closure of the
process denoted by τ(id) in Π, whereas (l′ : S′, τ ′) is the active closure of τ(id′) in Π ′. Here τ
denotes the local context of the configuration γ and τ ′(u) = τ(u′), for every local variable u
(remember that primed local variables are introduced in order to avoid name clashes between
the local variables of @l and @l′). Furthermore, the global assignment of γ is realized in both
the global states Π and Π ′. The auxiliary variable ’sched’ thus has the same value in the
global states Π and Π ′. By the above lemma, there exists a global state Π ′′ which can be
reached from both Π and Π ′ by local computations only. Since we can backtrack the local
computation steps of the two processes (denoted by τ(id) and τ(id′)), we may assume without
loss of generality that in the global state Π ′′ the process denoted by τ(id) is about to execute S
and τ(id′) is about to execute the statement S′. Let 〈S, γ〉 → γ′ be the terminating execution
of S (by τ(id)). It immediately follows that there exists a global state reachable from Π ′′

that realizes the global assignment of the configuration γ′ and in which τ(id′) is still about
to execute S′ (in the local context τ ′ introduced above). By definition of the reachability
predicates and the renamed local variables of @l′ we thus have

γ′ |= @l′

(note that the values of the ’fresh’ local variables of @l′ in the local context of γ′ are the same
as in the local context τ of the initial configuration γ). So we conclude that γ |= WP(S, @l′).

NVTI Nieuwsbrief 65

5 Conclusion

In this paper a sound and complete proof method is presented for recursive processes with
shared variables. The proof method distinguishes a local level which is based on a Hoare logic
for the sequential flow of control of recursive calls within one process and a global level which
deals with interference between processes.

The proof method incorporates the use of auxiliary variables. These variables are used to
capture specific aspects of the flow of control. In general, auxiliary variables can be used to
extend the proof method in a systematic manner to synchronization mechanisms and further
details of the underlying memory model.

Of particular interest is the use of auxiliary variables introduced in this paper as additional
formal parameters to reason about invariance properties of recursive calls within one process.
In the completeness proof such additional formal parameters are used to pass the stack of
local contexts. This use allows a complete characterization of recursive process calls in terms
of reachability predicates, as required by the concurrent context. How to incorporate the extra
rules for reasoning about invariance properties of recursive calls in a sequential context (see
[4] and [1]) is an interesting topic of future research.

References

1. K.R. Apt: Ten years of Hoare logic: a survey — part I. ACM Transactions on Programming Languages
and Systems, Vol. 3, No. 4, October 1981, pp. 431–483.

2. K.R. Apt. Formal justification of a proof system for Communicating Sequential Processes. Journal of
the ACM, Vol. 30, No. 1, January 1983, pp. 197–216.

3. K.R. Apt, N. Francez and W. P. de Roever. A proof system for Communicating Sequential Processes.
ACM Transactions on Programming Languages and Systems, 2:359-385, 1980.

4. G. A. Gorelick . A complete axiomatic system for proving assertions about recursive and non-recursive
programs. Technical Report 75, Department of Computer Science, University of Toronto, 1975.

5. S. Owicki. A consistent and complete deductive system for the verification of parallel programs. Pro-
ceedings of the eighth annual ACM symposium on Theory of computing. ACM Press, 1976.

6. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta Informatika, 6:319-
340, 1976.

7. J.V. Tucker and J.I. Zucker: Program Correctness over Abstract Data Types, with Error-State Seman-
tics. CWI Monograph Series, Vol. 6, Centre for Mathematics and Computer Science/North-Holland,
1988.

66 NVTI Nieuwsbrief

Statuten

Artikel 1.
1. De vereniging draagt de naam: “Nederlandse Vereniging voor Theoretische
Informatica”.
2. Zij heeft haar zetel te Amsterdam.
3. De vereniging is aangegaan voor onbepaalde tijd.
4. De vereniging stelt zich ten doel de theoretische informatica te bevorderen
haar beoefening en haar toepassingen aan te moedigen.

Artikel 2.
De vereniging kent gewone leden en ereleden. Ereleden worden benoemd door
het bestuur.

Artikel 3.
De vereniging kan niet worden ontbonden dan met toestemming van tenminste
drievierde van het aantal gewone leden.

Artikel 4.
Het verenigingsjaar is het kalenderjaar.

Artikel 5.
De vereniging tracht het doel omschreven in artikel 1 te bereiken door
a. het houden van wetenschappelijke vergaderingen en het organiseren van sym-
posia en congressen;
b. het uitgeven van een of meer tijdschriften, waaronder een nieuwsbrief of
vergelijkbaar informatiemedium;
c. en verder door alle zodanige wettige middelen als in enige algemene vergader-
ing goedgevonden zal worden.

Artikel 6.
1. Het bestuur schrijft de in artikel 5.a bedoelde bijeenkomsten uit en stelt het
programma van elk van deze bijeenkomsten samen.
2. De redacties der tijdschriften als bedoeld in artikel 5.b worden door het
bestuur benoemd.

Artikel 7.
Iedere natuurlijke persoon kan lid van de vereniging worden. Instellingen hebben
geen stemrecht.

Artikel 8.
Indien enig lid niet langer als zodanig wenst te worden beschouwd, dient hij de
ledenadministratie van de vereniging daarvan kennis te geven.

Artikel 9.
Ieder lid ontvangt een exemplaar der statuten, opgenomen in de nieuwsbrief van
de vereniging. Een exemplaar van de statuten kan ook opgevraagd worden bij
de secretaris. Ieder lid ontvangt de tijdschriften als bedoeld in artikel 5.b.

Artikel 10.
Het bestuur bestaat uit tenminste zes personen die direct door de jaarvergader-
ing worden gekozen, voor een periode van drie jaar. Het bestuur heeft het
recht het precieze aantal bestuursleden te bepalen. Bij de samenstelling van het
bestuur dient rekening gehouden te worden met de wenselijkheid dat vertegen-
woordigers van de verschillende werkgebieden van de theoretische informatica in
Nederland in het bestuur worden opgenomen. Het bestuur kiest uit zijn midden
de voorzitter, secretaris en penningmeester.

Artikel 11.
Eens per drie jaar vindt een verkiezing plaats van het bestuur door de jaarver-

NVTI Nieuwsbrief 67

gadering. De door de jaarvergadering gekozen bestuursleden hebben een zit-
tingsduur van maximaal twee maal drie jaar. Na deze periode zijn zij niet
terstond herkiesbaar, met uitzondering van secretaris en penningmeester. De
voorzitter wordt gekozen voor de tijd van drie jaar en is na afloop van zijn ambt-
stermijn niet onmiddellijk als zodanig herkiesbaar. In zijn functie als bestuurslid
blijft het in de vorige alinea bepaalde van kracht.

Artikel 12.
Het bestuur stelt de kandidaten voor voor eventuele vacatures. Kandidaten
kunnen ook voorgesteld worden door gewone leden, minstens een maand voor
de jaarvergadering via de secretaris. Dit dient schriftelijk te gebeuren op vo-
ordracht van tenminste vijftien leden. In het geval dat het aantal kandidaten
gelijk is aan het aantal vacatures worden de gestelde kandidaten door de jaarver-
gadering in het bestuur gekozen geacht. Indien het aantal kandidaten groter is
dan het aantal vacatures wordt op de jaarvergadering door schriftelijke stem-
ming beslist. Ieder aanwezig lid brengt een stem uit op evenveel kandidaten
als er vacatures zijn. Van de zo ontstane rangschikking worden de kandidaten
met de meeste punten verkozen, tot het aantal vacatures. Hierbij geldt voor de
jaarvergadering een quorum van dertig. In het geval dat het aantal aanwezige
leden op de jaarvergadering onder het quorum ligt, kiest het zittende bestuur
de nieuwe leden. Bij gelijk aantal stemmen geeft de stem van de voorzitter (of
indien niet aanwezig, van de secretaris) de doorslag.

Artikel 13.
Het bestuur bepaalt elk jaar het precieze aantal bestuursleden, mits in overeen-
stemming met artikel 10. In het geval van aftreden of uitbreiding wordt de
zo ontstane vacature aangekondigd via mailing of nieuwsbrief, minstens twee
maanden voor de eerstvolgende jaarvergadering. Kandidaten voor de ontstane
vacatures worden voorgesteld door bestuur en gewone leden zoals bepaald in ar-
tikel 12. Bij aftreden van bestuursleden in eerste of tweede jaar van de driejarige
cyclus worden de vacatures vervuld op de eerstvolgende jaarvergadering. Bij af-
treden in het derde jaar vindt vervulling van de vacatures plaats tegelijk met de
algemene driejaarlijkse bestuursverkiezing. Voorts kan het bestuur beslissen om
vervanging van een aftredend bestuurslid te laten vervullen tot de eerstvolgende
jaarvergadering. Bij uitbreiding van het bestuur in het eerste of tweede jaar van
de cyclus worden de vacatures vervuld op de eerstvolgende jaarvergadering. Bij
uitbreiding in het derde jaar vindt vervulling van de vacatures plaats tegelijk
met de driejaarlijkse bestuursverkiezing. Bij inkrimping stelt het bestuur vast
welke leden van het bestuur zullen aftreden.

Artikel 14.
De voorzitter, de secretaris en de penningmeester vormen samen het dagelijks
bestuur. De voorzitter leidt alle vergaderingen. Bij afwezigheid wordt hij ver-
vangen door de secretaris en indien ook deze afwezig is door het in jaren oudste
aanwezig lid van het bestuur. De secretaris is belast met het houden der notulen
van alle huishoudelijke vergaderingen en met het voeren der correspondentie.

Artikel 15.
Het bestuur vergadert zo vaak als de voorzitter dit nodig acht of dit door drie
zijner leden wordt gewenst.

Artikel 16.
Minstens eenmaal per jaar wordt door het bestuur een algemene vergadering
bijeengeroepen; één van deze vergaderingen wordt expliciet aangeduid met de
naam van jaarvergadering; deze vindt plaats op een door het bestuur te bepalen

68 NVTI Nieuwsbrief

dag en plaats.
Artikel 17.

De jaarvergadering zal steeds gekoppeld zijn aan een wetenschappelijk sym-
posium. De op het algemene gedeelte vaan de jaarvergadering te behandelen
onderwerpen zijn
a. Verslag door de secretaris;
b. Rekening en verantwoording van de penningmeester;
c. Verslagen van de redacties der door de vereniging uitgegeven tijdschriften;
d. Eventuele verkiezing van bestuursleden;
e. Wat verder ter tafel komt. Het bestuur is verplicht een bepaald punt op de
agenda van een algemene vergadering te plaatsen indien uiterlijk vier weken van
te voren tenminste vijftien gewone leden schriftelijk de wens daartoe aan het
bestuur te kennen geven.

Artikel 18.
Deze statuten kunnen slechts worden gewijzigd, nadat op een algemene ver-
gadering een commissie voor statutenwijziging is benoemd. Deze commissie doet
binnen zes maanden haar voorstellen via het bestuur aan de leden toekomen.
Gedurende drie maanden daarna kunnen amendementen schriftelijk worden
ingediend bij het bestuur, dat deze ter kennis van de gewone leden brengt,
waarna een algemene vergadering de voorstellen en de ingediende amendementen
behandelt. Ter vergadering kunnen nieuwe amendementen in behandeling wor-
den genomen, die betrekking hebben op de voorstellen van de commissie of
de schriftelijk ingediende amendementen. Eerst wordt over elk der amende-
menten afzonderlijk gestemd; een amendement kan worden aangenomen met
gewone meerderheid van stemmen. Het al dan niet geamendeerde voorstel wordt
daarna in zijn geheel in stemming gebracht, tenzij de vergadering met gewone
meerderheid van stemmen besluit tot afzonderlijke stemming over bepaalde ar-
tikelen, waarna de resterende artikelen in hun geheel in stemming gebracht
worden. In beide gevallen kunnen de voorgestelde wijzigingen slechts worden
aangenomen met een meerderheid van tweederde van het aantal uitgebrachte
stemmen. Aangenomen statutenwijzigingen treden onmiddellijk in werking.

Artikel 19.
Op een vergadering worden besluiten genomen bij gewone meerderheid van stem-
men, tenzij deze statuten anders bepalen. Elk aanwezig gewoon lid heeft daarbij
het recht een stem uit te brengen. Stemming over zaken geschiedt mondeling of
schriftelijk, die over personen met gesloten briefjes. Uitsluitend bij schriftelijke
stemmingen worden blanco stemmen gerekend geldig te zijn uitgebracht.

Artikel 20.
a. De jaarvergadering geeft bij huishoudelijk reglement nadere regels omtrent
alle onderwerpen, waarvan de regeling door de statuten wordt vereist, of de
jaarvergadering gewenst voorkomt.
b. Het huishoudelijk reglement zal geen bepalingen mogen bevatten die afwijken
van of die in strijd zijn met de bepalingen van de wet of van de statuten, tenzij
de afwijking door de wet of de statuten wordt toegestaan.

Artikel 21.
In gevallen waarin deze statuten niet voorzien, beslist het bestuur.

NVTI Nieuwsbrief 69

	tencate2.pdf
	Modal logic, temporal logic, and PDL
	XML and sibling ordered trees
	XPath 1.0 and its navigational core
	Two extensions of Core XPath 1.0
	Regular XPath: adding the full transitive closure operator
	Core XPath 2.0: adding intersection, complementation and quantified variables

	An experiment in formulation
	In conclusion
	Until queries

	inhoud.pdf
	Inhoudsopgave

	Text3:
	Text4:
	Text1:

