Nieuwsbrief van de Nederlandse Vereniging voor Theoretische

Informatica
Joke Lammerink Joost-Pieter Katoen Joost Kok Jaco van de Pol
Femke van Raamsdonk

Inhoudsopgave
Vanderedactiecooooinniiiiiii 5
Van de VOOIZittercooeveeiiiiiiiinii e 7
NVTI theoriedag 2009c.ccoooiiiiiiiiiiiiiiii i 9
Mededelingen van de OZ-scholen:

FIPA oo 13

FSIKS o 19

Wetenschappelijke bijdragen:
* Towards an information retrieval theory of everything
Djoerd Hiemstraooooveenei 27
* Infinite streams

Joerg Endrullis, Clemens Grabmayer, Dimitri Hendriks

enJan Willem Klopcc.o.. 39
* Semidefinite Programming Approximations for stable sets,

colouring, and cuts in graphs Monique Laurent 49
* Practising logic through the web

Freek Wiedijk ... 61

STALULEN.ooiiiiiiii i 69

Van de redactie

Geachte NVTI-leden!

De NVTI nieuwsbrief van 2009 ligt voor u, of heeft u in de hand. Zoals gebruikelijk vindt u hierin
de aankondiging voor de NVTI theoriedag, die dit jaar op vrijdag 20 maart in Utrecht plaats-
vindt. Sprekers dit jaar zijn: mede-Turing award winnaar in 2008 E. Allen Emerson (University of
Texas at Austin), Barbara Terhal (IBM Watson, NY), Frank de Boer (CWI, UL) en Paul Vitanyi
(CWI, UvA). Kortom: meer dan voldoende reden om de stoffige buro’s te verlaten en naar Utrecht
te komen.

De wetenschappelijke bijdragen dit jaar zijn van Djoerd Hiemstra (UT) over probabilistische mod-
ellen voor information retrieval — mocht u zich afvragen hoe u de Google’s page rank score van
uw webpagina kan verhogen, dan is dit een aanrader— en van Jérg Endrullis (VU), Clemens
Grabmayer (UU), Dimitri Hendriks (VU), en Jan Willem Klop (VU) over oneindige stromen en,
onder andere, hun grafische voorstelling. De bijdrage van Monique Laurent (CWI) gaat over ap-
proximatieve algoritmen voor lastige combinatorische optimalisatie problemen en Freek Wiedijk
(RUN) bericht over het ProofWeb systeem. Daarnaast is er een samenvatting van de belangrijkste
activiteiten van de onderzoekscholen IPA en SIKS in het afgelopen jaar. Alle auteurs hartelijk
dank voor hun bijdrage!

Tenslotte danken wij het CWI, NWO, Elsevier, IPA, SIKS en OzsL voor de sponsoring van de
NVTI activiteiten, en Susanne van Dam voor de secretariéle ondersteuning.

Namens de redactie van de NVTI,
Joost-Pieter Katoen

Samenstelling bestuur

Prof. dr. Jos Baeten (TU/e)

Prof. dr. Mark de Berg (TU/e)

Prof. dr. Harry Buhrmann (CWI en UvA)
Prof. dr. ir. Joost-Pieter Katoen (RWTH Aachen en UT)
Prof. dr. Jan Willem Klop (CWI, RUN en VU)
Prof. dr. Joost Kok (UL), voorzitter

Prof. dr. John-Jules Meyer (UU)

Dr. Jaco van de Pol (CWI en TU/e), secretaris
Dr. Femke van Raamsdonk (VU)

Prof. dr. Gerard Renardel de Lavalette (RUG)
Dr. Leen Torenvliet (UvA)

Van de voorzitter

De nieuwsbrief, de theoriedag en de mailing list zijn de drie pijlers van de NVTI.

De theoriedag staat bekend om zijn goede sprekers (zie
http://www.nvti.nl/speakerslist.html voor een overzicht sinds 1995) en ook dit jaar
ziet het programma er weer geweldig uit met E. Allen Emerson, Barbara Terhal,
Frank de Boer en Paul Vitanyi. De nieuwsbrief heeft altijd een interessante
wetenschappelijke inhoud en bevat ook de aankondiging van de theoriedag.

Achter de schermen van de NVTI wordt veel werk verzet. Een flink aantal mensen die
de theorie een warm hart toe dragen spannen zich voor de vereniging in en ik wil
graag deze mensen bedanken voor hun inzet voor de vereniging in de afgelopen jaren.

Dit jaar zijn er een aantal veranderingen: de nieuwsbrief krijgt een nieuwe redacteur
in de persoon van Marielle Stoelinga dic het stokje overneemt van

Joost-Pieter Katoen. Ook bestuurlijk zijn er veranderingen gepland, die echter nog wel
goedkeuring van de ledenvergadering op de theoriedag behoeven. Han La Poutré,
Karin Aardal en Wim Hesselink zijn bereid om tot het bestuur toe te treden. De
rolverdeling zal ook veranderen; Jaco van der Pol zal de nieuwe voorzitter worden en
Han La Poutré de nieuwe secretaris van het bestuur. Met al deze nieuwe mensen

aan boord ziet de toekomst van de NVTI er rooskleurig uit!

Ik kijk al uit naar de theoriedag 2009 op 20 maart en ik hoop dat u ook in staat bent
om te komen!

Joost N. Kok,
Voorzitter NVTI

Nederlandse Vereniging voor Theoretische Informatica

We are happy to invite you for the Theory Day 2009 of the NVTIL. The Dutch
Association for Theoretical Computer Science (NVTI) supports the study of
theoretical computer science and its applications.

NVTI Theory Day 2009
Friday March 20, 2009, 9:30-16:45
Hoog Brabant, Utrecht (close to Central Station)

We have an interesting program with excellent speakers from The Netherlands and
abroad, covering important streams in theoretical computer science. Below you will
find the abstracts.

Lecturers:

Barbara Terhal (IBM Watson, NY)
Frank de Boer (CWI, U Leiden)
Mark Kas (NWO Physical Sciences)
E. Allen Emerson (U Texas, Austin)
Paul Vitanyi (CWI, U v Amsterdam)

It is possible to participate in the organized lunch, for which registration is required.
Please register by E-mail (J.M.W.Lammerink@ewi.utwente.nl) or

by phone (053-4893767), no later than one week before the meeting (March 13,
2009). The costs of 15 Euro can be paid at the location. We just mention that in the
direct vicinity of the meeting room there are plenty of nice lunch facilities as well.

The NVTI theory day 2009 is sponsored (financially or in kind) by

NWO (Netherlands Organisation for Scientific Research), Elseviers Science,

CWI (Dutch Center of Mathematics and Computer Science) and the Dutch research
schools IPA (Institute for Programming Research and Algorithmics), OzsL (Dutch
Graduate school in Logic) and SIKS (Dutch research school for Information and
Knowledge Systems).

Please find the full program and abstracts of the lectures below.
Kind regards,

Jaco van de Pol,
NVTI secretary.

Program

9.30-10.00:

10.00-10.10:

10.10-11.00:

11.00-11.30:

11.30-12.20:

12.20-12.40:

12.40-14.10:

14.10-15.00:

15.00-15.20:

15.20-16.10:

16.10-16.40:

Arrival with coffee
Opening
Lecture: Barbara Terhal (IBM Watson, NY)
Title: Quantum Complexity Theory:
Bringing Rigor to Computational Quantum Physics

Coffee/Tea

Lecture: Frank de Boer (CWI, U Leiden)
Title: Tasks for Actors

Dr. Mark Kas (NWO Physical Sciences)
Title: Around the world (of Dutch computer science) in 8 years and
80 million euros

Lunch (see above for registration)

Lecture: E. Allen Emerson (U Texas, Austin)
Title: Model Checking: Theory, Themes, and Practice

Coffee/Tea

Lecture:Paul Vitanyi (CWI, U v Amsterdam)
Title: Universal Similarity

Business meeting NVTI

10

Abstracts

Speaker: Barbara Terhal (IBM Watson, NY)
Title: Quantum Complexity Theory:
Bringing Rigor to Computational Quantum Physics

In the past century physicists have developed many heuristic computational
techniques for understanding and analyzing quantum physical systems. While these
techniques often work very well in practice, a rigorous understanding of the efficiency
and limitations of these methods, that is, a quantum complexity theory, has been
lacking. We will discuss several results in the emerging field of quantum complexity
theory which address the complexity of problems in quantum physics. In particular we
will consider problems which are QMA-complete or "quantum NP-complete".

Speaker: Frank de Boer (CWI, U Leiden)
Title: Tasks for Actors

This lecture presents a modular method for a schedulability analysis of real time
distributed systems. Distributed systems are naturally described in terms of actors,
which constitute an asynchronous model for concurrent objects. An extension of the
actor model is presented with real time and behavioral interfaces for specifying the
order and timings of the messages an actor may send and receive. Scheduling policies
additionally determine the order in which the received messages are processed.

It is shown how to analyze the behavioral interface of an actor to check that every
received message is processed within the specified deadline (schedulability analysis).
The overall modular analysis of a system of actors is based on a technique for testing
the compatibility of the actual use of an actor and its behavioral interface.

Speaker:E. Allen Emerson (U Texas, Austin)
Title: Model Checking: Theory, Themes, and Practice

Model checking is an automatic method of verifying finite state concurrent programs.
The use of temporal logic and related frameworks to specify correctness has greatly
facilitated simply thinking about the verification problem. Despite early worries
about the intractability of state explosion, nowadays it can often be ameliorated,
permitting verification of enormously large systems in practice. We will discuss
various themes underlying the utility of model checking including expressive
specification, efficient reasoning, and simplification.

11

Speaker: Paul Vitanyi (CWI, U v Amsterdam)
Title: Universal Similarity

We survey a new area of parameter-free similarity distance measures useful in data-
mining, pattern recognition, learning and automatic semantics extraction. Given a
family of distances on a set of objects, a distance is universal up to a certain precision
for that family if it minorizes every distance in the family between every two objects
in the set, up to the stated precision (we do not require the universal distance to be an
element of the family). We consider similarity distances for two types of objects:
literal objects that as such contain all of their meaning, like genomes or books, and
names for objects. The latter may have literal embodyments like the first type, but
may also be abstract like "red" or "christianity." For the first type we consider a family
of computable distance measures corresponding to parameters expressing similarity
according to particular features between pairs of literal objects. For the second type
we consider similarity distances generated by web users corresponding to particular
semantic relations between the (names for) the designated objects. For both families
we give universal similarity distance measures, incorporating all particular distance
measures in the family. In the first case the universal distance is based on compression
and in the second case it is based on Google page counts related to search terms. In
both cases experiments on a massive scale give evidence of the viability of the
approaches.

12

g

o]

(2]

"

E

%, &
A &

N &

‘“ [, GO"

NDE gn AV

www.win.tue.nl/ipa/

Institute for Programming research and Algorithmics

The research school IPA (Institute for Programming Research and Algorithmics) educates re-
searchers in the field of programming research and algorithmics. This field encompasses the study
and development of formalisms, methods and techniques to design, analyse, and construct software
systems and components. IPA has three main research areas: Algorithmics & Complexity, Formal
Methods, and Software Technology & Engineering. Researchers from nine universities (University
of Nijmegen, Leiden University, Technische Universiteit Eindhoven, University of Twente, Utrecht
University, University of Groningen, Vrije Universiteit Amsterdam, University of Amsterdam, and
Delft University), the CWI and Philips Research (Eindhoven) participate in IPA.

In 1997, IPA was formally accredited by the Royal Dutch Academy of Sciences (KNAW). This
accreditation was extended in 2002 and 2007. In setting its agenda for 2007 - 2012, IPA chose five
focus areas, where we expect important developments in the near future and want to stimulate
collaboration. In the focus area:

Beyond Turing we want to explore novel paradigms of computation that incorporate concepts
that are no longer adequately modeled by the classical Turing machine such as nonuniformity
of memory, adaptivity and mobility.

Algorithms & models for life sciences we wish to apply algorithmic theory and formal models
to contribute to the understanding of biological processes, entities and phenomena.

Hybrid systems we want to continue to contribute to the confluence of systems and control
theory and computer science in integrated methods for modelling, simulation, analysis, and
design of such systems.

Model-driven software engineering we want to study various fundamental aspects of the
model-driven approach to software engineering.

Software analysis we want to make progress in the extraction of facts from source code and
their analysis, to obtain instruments for measuring the various quality attributes of software.

For descriptions of these areas see www.win.tue.nl/ipa/about.html.

Activities in 2008

IPA has two multi-day events per year which focus on current topics, the Lentedagen and the
Herfstdagen. In 2008, the Lentedagen were on Integrating Formal Methods and the Herfstdagen
were dedicated to the focus area Software Analysis.

13

Lentedagen on Integrating Formal Methods May 7 - 9, Hotel ’t Paviljoen, Rhenen
The TPA Lentedagen are an annual multi-day event, dedicated to a specific theme of current
interest to the research community of IPA. This year’s Lentedagen are dedicated to the integration
of formal methods.

Formal methods (languages, tools, and techniques for the analysis and design of systems, with
a sound, mathematical basis) come in many different flavors. One reason why this abundance of
approaches persists is that there is still no single method that does it all: analyzing a complex or
large system can require the application of different formal methods, modeling different relevant
aspects of the system in isolation. For instance, algebraic data types for its data, process algebras
or temporal logics for its behavior, duration calculus or timed automata for its timing. In the
efforts to address this problem, two directions can be distinguished: one is to try to increase
the scope of individual methods, extending them to cover more aspects within a single formal
method. The other is to try to couple methods to benefit from their combined coverage. In this
year’s Lentedagen we focus on the second direction, the coupling of formal methods.

Methods (or “notations”) can be coupled with different degrees of tightness, in their Ten
Commandments Revisited, Bowen and Hinchey distinguish three levels:

e Viewpoints in a loose coupling: different notations present different system views, with each
notation emphasizing a particular system aspect.

e Method integration in a closer coupling: several notations (both formal and informal or
semiformal) combine with manual or automatic translation between notations. The idea is
to provide an underlying semantics for the less formal notations, to enable well-understood
graphical (or other) presentations, and to offer the benefits of formal verification.

e Integrated methods in a tight coupling: multiple notations combine within a single framework
to give a uniform semantics to each notation.

Looking back over the past decade, the authors conclude that ground has only been gained on
the first level in the practice of software engineering (i.e., the UML), but they acknowledge that
progress has been made in research on the other levels. Within the IPA community both method
integration and integrated methods are topics of considerable interest. Combining these under the
heading of ” Integrating Formal Methods”, the Lentedagen aim to provide an overview of the work
that is being done in and around IPA, addressing the integration of formal methods both at the
level of formalisms and of the accompanying tools.

Einar Broch Johnsen (University of Oslo) and Hubert Garavel (INRIA Rhone-Alpes) were
invited speakers. Abstracts, hand-outs and papers are available through the archive on the IPA-
website:
www.win.tue.nl/ipa/archive/springdays2008/.

Herfstdagen on Software Analysis November 24 - 28, Hotel Dennenhoeve, Nunspeet

For the period 2007-2012, IPA has chosen five focus areas where it expects important developments
in the field in the near future. Each year the Herfstdagen will be dedicated to one of these areas.
This year’s Herfstdagen are dedicated to Software Analysis.

Quality software can be characterized in many ways. Of course, software should first and
foremost satisfy its functional requirements, but there are many non-functional quality aspects
as well. For instance, availability, modifiability, performance, security, testability and usability
are also important qualities of software. For each of these it is desirable to have analysis and
measurement instruments to determine to what extent a software system satisfies them. Analysis
starts with extracting relevant facts from the source code. This is a detailed step that is largely
dependent, on the programming languages that have been used during the construction of the source
code and of the forms of analysis that are required. It is not uncommon that several languages have
been used and in those cases cross-language fact extraction and analysis are necessary. Language-
parametric techniques for fact extraction are highly desirable but mostly still lacking.

14

After fact extraction, direct analysis of these facts can be done for certain applications such
as call graph analysis, dead code removal, analysis of information flows and the like. For other
applications a more abstract model has to be constructed that describes certain domain-specific
properties of the system that is implemented by the source code. In this area fall, for instance,
protocol analysis, deadlock analysis and determining certain security properties. It is crucial to
guarantee that the abstract model faithfully represents relevant properties of the original source
code. Achieving scalability and usability of the involved validation techniques is a major challenge.

A final aspect to consider is the way in which the results of software analysis are presented. It
is important to develop new methods for information visualization that will increase the usability
of software analysis.

Software analysis is essential for getting insight in the quality aspects of software. This is
true for old software that has evolved over the years, but also for new software that has to be
accepted from a third party. Software analysis will therefore become more and more important
as the outsourcing of software becomes more popular as well. It is also of particular importance
in the area of open source software, where there is typically not a single producer that can be
held responsible, but (by the very nature of the development process) the source code itself is
available, providing extensive opportunities for analysis. Software analysis may reveal certain
defects in software that have to be repaired. It is therefore also a prerequisite for refactoring,
transformation, renovation and other forms of software improvement. The seamless integration of
software analysis with software transformation is a rich area for research.

We feel that making progress in this area is both urgent and timely for several reasons: It
is urgent because the ever increasing dependence of our society on software systems and the
high-profile failures of some of those systems makes it mandatory to invest in techniques that can
measure various quality attributes of software in order to prevent such failures. It is timely because
progress in source-code analysis techniques enables the extraction of facts for more advanced
analysis and validation than is currently done, and because improvements of validation techniques
by way of algorithmic enhancements or concurrent execution enable the analysis of increasingly
large problems.

This year’s Herfstdagen aim to bring researchers from in and around IPA together, for an
overview of current research in Software Analysis. The program for the event was composed
by Arie van Deursen (TUD) and Paul Klint (UvA, CWI). The contributions to the program
were clustered in the following sessions: Software Analysis, Repository Analysis, Co-evolution,
Analysis for refactoring, Visual analysis, Model extraction, Dynamic analysis, Fault diagnosis,
Security, Refactoring with formal methods, Static analysis via code query technologies, Language
parametric analysis and transformation, and Type-related analysis.

Invited speakers were Ralf Lammel (Universitat Koblenz-Landau) and Rainer Koschke (Uni-
versitdt Bremen). Abstracts, hand-outs, and papers are available through the IPA website at
www.win.tue.nl/ipa/archive/falldays2008/.

IPA organises Courses on each of its major research fields, Algorithms and Complexity, Formal
Methods and Software Technology & Engineering. These courses intend to give an overview of
the research of IPA in these fields, and are organized at regular intervals on a cyclic schedule. In
2008, the course on Algorithms and Complexity was held.

IPA Course on Formal Methods June 23 - 27, TU/e, Eindhoven

IPA organises courses on each of its major research fields, Algorithms and Complexity, Formal
Methods and Software Technology. These three IPA Courses intend to give an overview of (part
of) the research of IPA in this specific field. They are organised in a cycle of two years, and form
a mandatory element in the education plan of IPA PhD-students (every student should attend at
least two out of the three IPA courses).

The Formal Methods Course, which is hosted by IPA at the Technische Universiteit Eindhoven
focussed on five main areas of Formal Methods research. One course day has been dedicated to
each of these areas, in which lectures are combined with hands-on tool training. The program for
this edition of the course was composed by Jaco van de Pol (UT). Topics and teachers were: Timed

15

Automata & UPPAAL, Frits Vaandrager (RU), Model Checking with SPIN, Theo C. Ruys (UD),
Theorem Proving & PVS, Erik Poll (RU), Behavioural Analysis using mCRL2, Aad Mathijssen,
Bas Ploeger, Tim Willemse, Frank Stappers (TU/e), and Graph Transformations & GROOVE,
Arend Rensink (UT).

IPA Ph.D. Defenses in 2008

W. Pieters (RU, January 21)

La Volonté Machinale: Understanding the Electronic Voting Controversy
Promotor: prof.dr. B.P.F. Jacobs. Co-promotores: dr.ir. E. Poll, dr. M.J. Becker
IPA Dissertation Series 2008-01

M. Bravenboer (UU, January 21)

Exercises in Free Syntax: Syntax Definition, Parsing, and Assimilation of Language Conglomer-
ates

Promotor: prof.dr. D.S. Swierstra. Co-promotor: dr. E. Visser

IPA Dissertation Series 2008-06

A.M. Marin (TUD, January 25)

An Integrated System to Manage Crosscutting Concerns in Source Code
Promotor: prof.dr. A. van Deursen

IPA Dissertation Series 2008-04

N.C.W.M. Braspenning (TU/e, February 18)

Model-based Integration and Testing of High-tech Multi-disciplinary Systems

Promotores: prof.dr.ir. J.E. Rooda, prof.dr. J.C.M. Baeten. Co-promotor: dr.ir. J.M. van de
Mortel-Fronczak

IPA Dissertation Series 2008-05

M. Torabi Dashti (VUA, February 27)

Keeping Fairness Alive: Design and Formal Verification of Optimistic Fair Ezxchange Protocols
Promotores: prof.dr. W.J. Fokkink, prof.dr. J.C. van de Pol

IPA Dissertation Series 2008-07

A.L. de Groot (RU, March 6)

Practical Automaton Proofs in PVS

Promotor: prof.dr. F.V. Vaandrager. Co-promotor: dr. J. Hooman
IPA Dissertation Series 2008-02

I.S. Zapreev (UT, March 7)

Model Checking Markov Chains: Techniques and Tools

Promotores: prof.dr.ir. J.P. Katoen, prof.dr. H. Brinksma

IPA Dissertation Series 2008-11

I. Hasuo (RU, March 10)

Tracing Anonymity with Coalgebras

Promotor: prof.dr. B.P.F. Jacobs

IPA Dissertation Series 2008-09

G. Giilesir (UT, March 13)

Evolvable Behavior Specifications Using Context-Sensitive Wildcards
Promotor: prof.dr.ir. M. Aksit. Co-promotor: dr.ir. L.M.J. Bergmans
IPA Dissertation Series 2008-13

M. Bruntink (TUD, March 17)

Renovation of Idiomatic Crosscutting Concerns in Embedded Systems
Promotores: prof.dr. A. van Deursen, prof.dr. P. Klint

IPA Dissertation Series 2008-03

I.S.M. de Jong (TU/e, March 27)

Integration and Test Strategies for Complex Manufacturing Machines

16

Promotor: prof.dr.ir. J.E. Rooda. Co-promotor: dr.ir. J.M. van de Mortel-Fronczak
IPA Dissertation Series 2008-08

L.G.W.A. Cleophas (TU/e, April 1)

Tree Algorithms: Two Taxonomies and a Toolkit

Promotores: prof.dr. M.G.J. van den Brand, prof.dr. B.W. Watson. Co-promotor: dr.ir. C.
Hemerik

IPA Dissertation Series 2008-10

M. Farshi (TU/e, April 8)

A Theoretical and Ezperimental Study of Geometric Networks

Promotor: prof.dr. M.T. de Berg. Co-promotor: dr. J. Gudmundsson

IPA Dissertation Series 2008-12

F.D. Garcia (RU, May 9)

Formal and Computational Cryptography: Protocols, Hashes and Commitments
Promotor: prof.dr. B.P.F. Jacobs. Co-promotor: dr. J.-J. Hoepman

IPA Dissertation Series 2008-14

P.E.A. Diirr (UT, June 26)

Resource-based Verification for Robust Composition of Aspects
Promotor: prof.dr.ir. M. Aksgit. Co-promotor: dr.ir. L.M.J. Bergmans
IPA Dissertation Series 2008-15

E.M. Bortnik (TU/e, July 1)

Formal Methods in Support of SMC Design

Promotores: prof.dr.ir. J.E. Rooda, prof.dr. J.C.M. Baeten
IPA Dissertation Series 2008-16

C.M. Gray (TU/e, August 25)

Algorithms for Fat Objects: Decompositions and Applications
Promotor: prof.dr. M.T. de Berg

IPA Dissertation Series 2008-19

M. van der Horst (TU/e, September 4)
Scalable Block Processing Algorithms

Promotor: prof.dr.ir. C.H. van Berkel. Co-promotor: prof.dr. J.J. Lukkien
IPA Dissertation Series 2008-18

J.R. Calamé (UT, September 4)

Testing Reactive Systems with Data - Enumerative Methods and Constraint Solving
Promotores: prof.dr. J.C. van de Pol, prof.dr. W.J. Fokkink

IPA Dissertation Series 2008-20

E. Mumford (TU/e, September 8)

Drawing Graphs for Cartographic Applications

Promotor: prof.dr. M.T. de Berg. Co-promotor: dr. B. Speckmann
IPA Dissertation Series 2008-21

R.H. Mak (TU/e, September 9)

Design and Performance Analysis of Data-Independent Stream Processing Systems
Promotores: prof.dr. P.A.J. Hilbers, prof.dr.ir. C.H. van Berkel

IPA Dissertation Series 2008-17

A. Koprowski (TU/e, September 25)

Termination of Rewriting and Its Certification

Promotores: prof.dr. H. Zantema, prof.dr.ir. J.F. Groote

IPA Dissertation Series 2008-24

U. Khadim (TU/e, September 29)

Process Algebras for Hybrid Systems: Comparison and Development

Promotor: prof.dr. J.C.M. Baeten. Co-promotor: dr.ir. P.J.L. Cuijpers
IPA Dissertation Series 2008-25

17

J. Markovski (TU/e, October 2)

Real and Stochastic Time in Process Algebras for Performance Evaluation
Promotor: prof.dr. J.C.M. Baeten. Co-promotor: dr. E.P. de Vink

IPA Dissertation Series 2008-26
H. Kastenberg (UT, October 3)

Graph-Based Software Specification and Verification
Promotor: prof.dr. H. Brinksma. Co-promotor: prof.dr.ir. M. Aksit

IPA Dissertation Series 2008-27
I.R. Buhan (UT, October 23)

Cryptographic Keys from Noisy Data Theory and Applications
Promotor: prof.dr. P.H. Hartel. Co-promotor: dr.ir. R.N.J. Veldhuis

IPA Dissertation Series 2008-28
E.H. de Graaf (UL, October 29)

Mining Semi-structured Data, Theoretical and Experimental Aspects of Pattern Evaluation
Promotor: prof.dr. J.N. Kok. Co-promotor: dr. W.A. Kosters

IPA Dissertation Series 2008-22

R.S. Marin-Perianu (UT, November 6)

Wireless Sensor Networks in Motion: Clustering Algorithms for Service Discovery and Provision-

ing
Promotor: prof.dr. P.H. Hartel
IPA Dissertation Series 2008-29

R. Brijder (UL, December 3)

Models of Natural Computation: Gene Assembly and Membrane Systems
Promotor: prof.dr. G. Rozenberg. Co-promotor: dr. H.J. Hoogeboom

IPA Dissertation Series 2008-23

Activities in 2009

IPA is planning several activities for 2009, including the Lentedagen (April 15-17) which is or-
ganized in combination with ASCI and which will be dedicated to Algorithms for data analysis
and visualization, the Course on Software Technology & Engineering (TU/e, Eindhoven), and the
Herfstdagen (November) which will be dedicated to the focus area Hybrid Systems of IPA. More
information on these events will appear on the IPA-website as dates and locations for these events

are confirmed.

Addresses

Visiting address

Technische Universiteit Eindhoven
Main Building HG 7.22

Den Dolech 2

5612 AZ Eindhoven

The Netherlands

tel. (+31)-40-2474124 (IPA Secretariat)
fax (+31)-40-2475361

e-mail ipa@tue.nl

url www.win.tue.nl/ipa/

Postal address

IPA, Fac. of Math. and Comp. Sci.
Technische Universiteit Eindhoven
P.O. Box 513

5600 MB Eindhoven

The Netherlands

18

School for Information and Knowledge Systems (SIKS) in 2008

Richard Starmans (UU)

Introduction

SIKS is the Dutch Research School for Information and Knowledge Systems. It was founded in
1996 by researchers in the field of Artificial Intelligence, Databases & Information Systems and
Software Engineering. Its main concern is research and education in the field of information and
computing sciences, more particular in the area of information and knowledge systems.The
School currently concentrates on seven focus areas in the IKS field: Agent Technology,
Computational Intelligence, Knowledge Representation and Reasoning, Web-based Information
Systems, Enterprise Information Systems, Human Computer Interaction, and Data Management,
Storage and Retrieval.

SIKS is an interuniversity research school that comprises 12 research groups from 10 universities
and CWI. Currently, over 400 researchers are active, including 200 Ph.D -students. The Vrije
Universiteit in Amsterdam is SIKS' administrative university, and as off January 1 2006 Prof.dr.
R.J. Wieringa (UT) was appointed scientific director. The office of SIKS is located at Utrecht
University. SIKS received its first accreditation by KNAW in 1998 and was re-accredited in June
2003 for another period of 6 years. In December 2008 SIKS has applied for another accreditation
period of six years.

Activities

We here list the main activities (co-)organized or (co-)financed by SIKS. We distinguish basic
courses, advanced courses and other activities (including master classes, workshops, one-day
seminars, conferences, summer schools, doctoral consortia and research colloquia)

Basic courses:

“Interactive Systems”, May 19 - 20, 2008, NH Hotel, Best
Course director: Prof.dr. P. De Bra (TU/e), Prof.dr. G. van der Veer (VUA/OU)

“Combinatory Methods”, May 21-22, 2008, NH Hotel, Best
Course director: Dr. N. Roos (UM)

“Research methods and methodology for IKS", 24-25-26 November, 2008, Zeist
Course directors: Dr. H. Weigand (UvT), Prof.dr. R. Wieringa (UT), Prof.dr. H. Akkermans (VUA)
Prof.dr. J.-J.Ch. Meyer (UU), Dr. R.J.C.M. Starmans (UU).

“‘Mathematical methods for IKS”, 08-09 December, 2008, Landgoed Huize Bergen, Vught
Course directors: Prof.dr. E.O. Postma (UvT), Prof.dr. T. Heskes (RUN)

“Knowledge modeling”, 10-11 December 2008, Landgoed Huize Bergen, Vught

Course director: Dr. B. Bredeweg (UVA)

Advanced courses:

“Engineering Web-based Systems: a semantic perspective”, March 03-04 2008, Landgoed Huize
Bergen, Vught.

Course directors: Prof.dr. G.-J. Houben (TUD), Dr. S. Schiobach (VUA)

“Summer course on Datamining”, 25-29 August 2008, Maastricht
Course directors: Dr. E. Smirnov (UM), Prof.dr. E.O. Postma (UM)

19

“Computational Intelligence”, October 23 en 24, 2008, Woudschoten, Zeist
Course directors: Prof.dr. A.P.J.M. Siebes (UU), Dr. U. Kaymak (EUR), Dr. A. Feelders (UU)

“Business Process Management’,November 06-07, 2008, Landgoed Huize Bergen, Vught
Course directors: Prof.dr.ir. W. van der Aalst (TU/e), Prof.dr. M. Reichert (Univ. Uim)

“Multi Agent Systems: Theory, Technology and Applications”, December 11-12, 2008, Delft
Course directors: Prof. dr. B. De Schutter (TUD), Prof. dr. C. Witteveen (TUD).

Other activities:

Conference: Benelearn 08, May 19-20, 2008, Spa (Belgium)

Conference: BNAIC 08, October 30-31, 2008, Enschede

Conference: Dutch-Belgian Database Day 2008 (DBDBD), October 2008, Namur (Belgium)
Conference: DIR 2008, April 14-15, 2008, Maastricht

Conference: “SIKS-Conference on Enterprise Information Systems” (EIS), May 22-23, Tilburg
Conference: “First International Conference on Human-Robot Personal Relationships”, 12-13
June, Maastricht

Masterclass: “Ontology-Driven conceptual modeling with applications”, March 04-05, 2008,
Enschede

Masterclass: “SIKS-ICS Master class Distributed model based diagnosis and repair”, 07
Oktober, Utrecht, 25 June, 2008

NVTI Theory Day 2008, March 14, 2008, Utrecht

SIKS Evaluation Days 2008, 02-03 June, Amsterdam

SIKS-day 2008, October 02, 2008, Utrecht

Seminar: “The Semantic Web”, 09 April 2008, Utrecht

Seminar: “SIKS/Yahoo Seminar: Searching and Ranking in Structured Text Repositories”, 27
June, 2008, Enschede

Seminar: UU-SIKS Seminars (2 times in 2008)

SIKS-Agent Colloquia (10 times in 2008), Utrecht/Delft/Amsterdam

SIKS-IKAT Colloquia (8 times), Maastricht

Summerschool EASSS 2008, May, 05-09, 2008, Lisbon (Portugal)

Symposium: The Dynamics of Knowledge and Interpretation, April 22, 2008, Nijmegen
Symposium: “SIKS-MICC Symposium on Embodied Cognition”, 25 June, 2008 Maastricht
Symposium: “CAI-SIKS Symposium New Directions in Evolutionary Computation®, 27
November 2008, Nijmegen

Symposium: “RU-SIKS Symposium:Trends in Artificial Intelligence”, 28 November 2008,
Nijmegen

Workshop: “Agent Based approaches in Economics”, January 24, 2008, Rotterdam.
Workshop: “Machine Learning and Multimodal Interaction”, 8-10 September 2008 Utrecht
Workshop: “ERIM-SIKS Workshop on Support Vector Machines and Classification”,12
September 2008 Rotterdam

Workshop "Image Processing for Artist identification 11", 20-21 Oktober, 2008, Amsterdam
Workshop TiCC-SIKS Workshop on "Single Neuron Modeling", 02 December 2008, Tilburg
Working Conference on Human Factors and Computational Models in Negotiation, 08-09
December,2009, Delft

Ph.D.-defenses in 2008

In 2008 35 researchers successfully defended their Ph.D.-thesis and published their work in the
SIKS-dissertation Series.

20

2008-01

Katalin Boer-Sorban (EUR)

Agent-Based Simulation of Financial Markets: A modular, continuous-time approach
Promotor: Prof. dr. A. de Bruin (EUR)

Copromotor: Dr. ir. U. Kaymak (EUR)

Promotie: 25 January 2008

2008-02

Alexei Sharpanskykh (VU)

On Computer-Aided Methods for Modeling and Analysis of Organizations
Promotor: Prof.dr. J. Treur (VU)

Promotie: 10 January 2008

2008-03

Vera Hollink (UVA)

Optimizing hierarchical menus: a usage-based approach
Promotor: Prof.dr. B.J. Wielinga (UvA)

Copromotor:Dr. M.W. van Someren (UvA)

Promotie: 31 January 2008

2008-04

Ander de Keijzer (UT)

Management of Uncertain Data - towards unattended integration
Promotor: Prof. dr. P.M.G. Apers (UT)

Copromotor:Dr. ir. M. van Keulen (UT)

Promotie: 01 februari 2008

2008-05

Bela Mutschier (UT)

Modeling and simulating causal dependencies on process-aware information systems from a cost
perspective

Promotor: Prof. Dr. R. J. Wieringa (UT)

Copromotor:Dr. M. U. Reichert (UT)

Promotie: 17 January 2008

2008-06

Arjen Hommersom (RUN)

On the Application of Formal Methods to Clinical Guidelines, an Artificia! Intelligence Perspective
Promotor: Prof.dr.ir. Th.P. van der Weide (RUN)

Co-promotor: dr. P.J.F. Lucas (RUN)

Promotie: 18 April 2008

2008-07

Peter van Rosmalen (OU)

Supporting the tutor in the design and support of adaptive e-learning
Promotor: Prof. dr. E.J.R. Koper (OU)

Co-promotor: Prof. dr. P.B. Sloep (OU)

Promotie: 18 April 2008

2008-08

Janneke Bolt (UU)

Bayesian Networks: Aspects of Approximate Inference
Promotor: Prof.dr.ir L.C. van der Gaag (UU)

Promotie: 21 April 2008

2008-09

Christof van Nimwegen (UU)
The paradox of the guided user: assistance can be counter-effective

21

Promotor: Prof.dr. L. van den Berg (UU)
Co-promotor: Dr. H. van Oostendorp (UU)
Promotie: 31 March 2008

2008-10

Wouter Bosma (UT)

Discourse oriented summarization
Promotor: Prof. dr. ir. A. Nijholt (UT)
Co-promotor: Dr. M. Theune (UT)
Promotie: 27 March 2008

2008-11

Vera Kartseva (VU)

Designing Controls for Network Organizations: A Value-Based Approach
P Promotores: Prof. dr. Y.H. Tan (VU), Prof.dr.ir R. Paans (VU)
Co-promotor: Dr. J. Gordijn (VU)

Promotie: 28 May 2008

2008-12

Jozsef Farkas (RUN)

A Semiotically Oriented Cognitive Model of Knowledge Representation
Promotor: Prof. dr.ir. T.P. van der Weide (RUN)

Co-promotor: Dr. J.J. Sarbo (RUN)

Promotie: 23 April 2008

2008-13

Caterina Carraciolo (UVA)

Topic Driven Access to Scientific Handbooks
Promotor: Prof. dr.M. de Rijke (UVA)
Co-promotor: Dr. J. Kircz (HvA)

Promotie: 25 April 2008

2008-14

Arthur van Bunningen (UT)

Context-Aware Querying; Better Answers with Less Effort

Promotores: Prof. dr.P.M.G. Apers (UT), Prof.dr. L. Feng (Tsinghua University, China)
Co-promotor: Dr. M. Fokkinga (UT)

Promotie: 13 June 2008

2008-15

Martijn van Otterlo (UT)

The Logic of Adaptive Behavior: Knowledge Representation and Algorithms for the Markov
Decision Process Framework in First-Order Domains.

Promotores: Prof. dr.ir A. Nijholt (UT), Prof.dr. J.-J.Ch. Meyer (UU)

Co-promotor: Dr. M. Poel (UT)

Referent: Dr. M. Wiering (RUG)

Promotie: 30 May 2008

2008-16

Henriette van Vugt (VU)

Embodied agents from a user's perspective

Promotores: Prof.dr. J. Kleinnijenhuis (VU) Prof.dr. G.C. van der Veer (VU)
Co-promotores: Dr. J. Hoorn (VU), Dr. E.A. Konijn (VU)

Promotie: 25 June 2008

2008-17

Martin Op 't Land (TUD)
Applying Architecture and Ontology to the Splitting and Allying of Enterprises

22

Promotor: Prof.dr. ir. J.L.G. Dietz (TUD)
Promotie: 13 June 2008

2008-18

Guido de Croon (UM)

Adaptive Active Vision

Promotores: Prof. dr. E.O. Postma (UM), Prof. dr. H.J. van den Herik (UM)
Promotie: 26 June 2008

2008-19

Henning Rode (UT)

From Document to Entity Retrieval: Improving Precision and Performance of Focused Text
Search

Promotor: Prof.dr. P.M.G. Apers (UT)

Co-promotor: Dr. D. Hiemstra (UT)

Promotie: 27 June 2008

2008-20

Rex Arendsen (UVA)

Geen bericht, goed bericht. Een onderzoek naar de effecten van de introductie van elektronisch
berichtenverkeer met de overheid op de administratieve lasten van bedrijven.

Promotor: prof. dr. T.M. van Engers (UvA)

Promotie: 07 October 2008

2008-21

Krisztian Balog (UVA)

People Search in the Enterprise
Promotor: Prof.dr. M. de Rijke (UVA)
Promotie: 30 September 2008

2008-22

Henk Koning (UU)

Communication of IT-Architecture

Promotores: Prof. dr. S. Brinkkemper (UU), Prof. dr. J.C. van Viiet (VU),
Co-promotor: Dr. R. Bos (UU)

Promotie: 24 September 2008

2008-23

Stefan Visscher (UU)

Bayesian network models for the management of ventilator-associated pneumonia
Promotor:Prof.dr. M.J.M Bonten (UU/ UMCU)

Co-promotores: Dr. P. Lucas (RUN), Dr. C.A.M. Schurink (EUR)

Promotie: 30 September 2008

2008-24

Zharko Aleksovski (VU)

Using background knowledge in ontology matching
Promotor: Prof. dr. F. van Harmelen (VU)
Co-promotor: Dr. W. ten Kate (VU)

Promotie: 05 September 2008

2008-25

Geert Jonker (UU)

Efficient and Equitable Exchange in Air Traffic Management Plan Repair using Spender-signed
Currency

Promotor: Prof.dr. J.- J. Ch. Meyer (UU)

Co-promotor: Dr. F. Dignum (UU)

Promotie: 06 October 2008

23

2008-26

Marijn Huijbregts (UT)

Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled
Promotor: Prof. dr. F.M.G. de Jong (UT)

Co-promotor: dr. R.J.F. Ordeiman (UT)

Promotie: 21 November 2008

2008-27

Hubert Vogten (OU)

Design and Implementation Strategies for IMS Learning Design
Promotor: Prof.dr. E.J.R. Koper (OU)

Co-promotor: Dr. J.M. van Bruggen (OU)

Promotie; 07 November 2008

2008-28

lidiko Flesch (RUN)

On the Use of Independence Relations in Bayesian Networks
Promotor: Prof. dr. ir. Th.P. van der Weide (RUN)
Co-promotor: Dr. P.J.F. Lucas (RUN))

Promotie: 27 November 2008

2008-29

Dennis Reidsma (UT)

Annotations and Subjective Machines - Of Annotators, Embodied Agents, Users, and Other
Humans

Promotor: Prof. dr. ir. A. Nijholt (UT)

Co-promotor: Dr. ir. H. J. A. op den Akker (UT)

Promotie: 09 October 2008

2008-30

Wouter van Atteveldt (VU)

Semantic Network Analysis: Techniques for Extracting, Representing and Querying Media
Content

Promotor: Prof.dr. F. van Harmelen (VU), Prof.dr. J. Kleinnijenhuis (VU)

Co-promotor: Dr. S. Schiobach (VU)

Promotie: 11 November 2008

2008-31

Loes Braun (UM)

Pro-Active Medical Information Retrieval

Promotor: Prof.dr. H.J. van den Herik (UM), Prof.dr.ir. A. Hasman (UvA)
Co-promotor: Dr. F. Wiesman (UVA)

Promotie: 29 October 2008

2008-32

Trung H. Bui (UT)

Toward Affective Dialogue Management using Partially Observable Markov Decision Processes
Promotor: Prof. dr. ir. A. Nijholt (UT)

Co-promotor: Dr. J. Zwiers (UT)

Promotie: 09 October 2008

2008-33

Frank Terpstra (UVA)

Scientific Workflow Design; theoretical and practical issues
Promotor: Prof.dr. P.W.Adriaans (UVA)

Co-promotor: Dr. G.R. Meijer (UVA)

Promotie: 06 November 2008

24

2008-34

Jeroen de Knijf (UU)

Studies in Frequent Tree Mining
Promotor: Prof. dr. A.P.J.M. Siebes (UU)
Co-promotor: Dr. A.J. Feelders (UU)
Promotie: 19 November 2008

2008-35

Ben Torben Nielsen (UvT)

Dendritic morphologies: function shapes structure

Promotor: Prof. dr H.J. van den Herik (UvT), Prof.dr. E.O. Postma (UvT)
Co-promotor: Dr. K.P. Tuyls (TUE)

Promotie: 03 December 2008

25

26

'Towards an Information Retrieval Theory of
Everything*

Djoerd Hiemstra
University of T'wente
http://www.cs.utwente.nl/~hiemstra

Abstract

I present three well-known probabilistic models of information retrieval
in tutorial style: The binary independence probabilistic model, the lan-
guage modeling approach, and Google’s page rank. Although all three
models are based on probability theory, they are very different in na-
ture. Each model seems well-suited for solving certain information re-
trieval problems, but not so useful for solving others. So, essentially each
model solves part of a bigger puzzle, and a united view on these models
might be a first step towards an Information Retrieval Theory of Every-
thing.

1 Introduction

Many applications that handle information on the internet would be completely
inadequate without the support of information retrieval technology. How would
we find information on the world wide web if there were no web search engines?
How would we manage our email without spam filtering? Much of the develop-
ment of information retrieval technology, such as web search engines and spam
filters, requires a combination of experimentation and theory. Experimentation
and rigorous empirical testing are needed to keep up with increasing volumes of
web pages and emails. Furthermore, experimentation and constant adaptation
of technology is needed in practice to counteract the effects of people that de-
liberately try to manipulate the technology, such as email spammers. However,
if experimentation is not guided by theory, engineering becomes trial and er-
ror. New problems and challenges for information retrieval come up constantly.
They cannot possibly be solved by trial and error alone. So, what is the theory
of information retrieval?

*A more extensive overview of information retrieval theory, covering eight models is given
in: Djoerd Hiemstra, Information Retrieval Models. In: Ayse Goker, John Davies, and Mar-
garet Graham (eds.), Information Retrieval: Searching in the 21st Century, Wiley, 2009

27

There is not one convincing answer to this question. There are many theo-
ries, here called formal models, and each model is helpful for the development of
some information retrieval tools, but not so helpful for the development of oth-
ers. In order to understand information retrieval, it is essential to learn about
these retrieval models. In this paper, I present three well-known probabilistic
models of information retrieval in a tutorial style. But first, we will describe
what exactly it is that these models model.

2 Terminology

An information retrieval system is a software program that stores and manages
information on documents, often textual documents but possibly multimedia.
The system assists users in finding the information they need. It does not
explicitly return information or answer questions. Instead, it informs on the
existence and location of documents that might contain the desired informa-
tion. Some suggested documents will, hopefully, satisfy the user’s information
need. These documents are called relevant documents. A perfect retrieval sys-
tem would retrieve only the relevant documents and no irrelevant documents.
However, perfect retrieval systems do not exist and will not exist, because search
statements are necessarily incomplete and relevance depends on the subjective
opinion of the user. In practice, two users may pose the same query to an in-
formation retrieval system and judge the relevance of the retrieved documents
differently: Some users will like the results, others will not.

There are three basic processes an information retrieval system has to sup-
port: the representation of the content of the documents, the representation
of the user’s information need, and the comparison of the two representations.
The processes are visualized in Figure 1. In the figure, squared boxes represent
data and rounded boxes represent processes.

Information need Documents

Query formulation
Query Indexed documents

Matching

Feedback Retrieved documents

Figure 1: Information retrieval processes

28

Representing the documents is usually called the indexing process. The pro-
cess takes place off-line, that is, the end user of the information retrieval system
is not directly involved. The indexing process results in a representation of the
document. Often, full text retrieval systems use a rather trivial algorithm to
derive the index representations, for instance an algorithm that identifies words
in an English text and puts them to lower case. The indexing process may in-
clude the actual storage of the document in the system, but often documents are
only stored partly, for instance only the title and the abstract, plus information
about the actual location of the document.

Users do not search just for fun, they have a need for information. The
process of representing their information need is often referred to as the query
formulation process. The resulting representation is the query. In a broad
sense, query formulation might denote the complete interactive dialogue between
system and user, leading not only to a suitable query but possibly also to the
user better understanding his/her information need: This is denoted by the
feedback process in Figure 1.

The comparison of the query against the document representations is called
the matching process. The matching process usually results in a ranked list of
documents. Users will walk down this document list in search of the information
they need. Ranked retrieval will hopefully put the relevant documents towards
the top of the ranked list, minimizing the time the user has to invest in reading
the documents. Simple but effective ranking algorithms use the frequency distri-
bution of terms over documents, but also other statistics, such as the number of
hyperlinks that point to the document. Ranking algorithms based on statistical
approaches easily halve the time the user has to spend on reading documents.
The theory behind ranking algorithms is a crucial part of information retrieval
and the major theme of this paper.

3 Models of Information Retrieval

There are two good reasons for having models of information retrieval. The first
is that models guide research and provide the means for academic discussion.
The second reason is that models can serve as a blueprint to implement an
actual retrieval system.

Mathematical models are used in many scientific areas with the objective to
understand and reason about some behavior or phenomenon in the real world.
One might for instance think of a model of our solar system that predicts the
position of the planets on a particular date, or one might think of a model of the
world climate that predicts the temperature given the atmospheric emissions of
greenhouse gases. A model of information retrieval predicts and explains what
a user will find relevant given the user query. The correctness of the model’s
predictions can be tested in a controlled experiment. In order to do predic-
tions and reach a better understanding of information retrieval, models should
be firmly grounded in intuitions, metaphors and some branch of mathematics.
Intuitions are important because they help to get a model accepted as reason-

29

able by the research community. Metaphors are important because they help
to explain the implications of a model to a bigger audience. For instance, by
comparing the earth’s atmosphere with a greenhouse, non-experts will under-
stand the implications of certain models of the atmosphere. Mathematics are
essential to formalise a model, to ensure consistency, and to make sure that it
can be implemented in a real system. As such, a model of information retrieval
serves as a blueprint which is used to implement an actual information retrieval
system.

The following sections will describe three models of information retrieval
rather extensively. Section 4 describes the classical probabilistic retrieval model,
Section 5 describes the language modeling approach, and Section 6 describes the
page rank model. Section 7 describes an approach to unify these three rather
distinct models in a attempt to construct a “theory of everything”. Section 8
concludes this paper.

4 'The probabilistic retrieval model

Several approaches that try to model matching and ranking using probability
theory. The notion of the probability of something, for instance the probability
of relevance notated as P(R), is usually formalized through the concept of an
experiment, where an experiment is the process by which an observation is
made. The set of all possible outcomes of the experiment is called the sample
space. In the case of P(R) the sample space might be {relevant, irrelevant},
and we might define the random variable R to take the values {0, 1}, where
0 =irrelevant and 1 =relevant.

Let’s define an experiment for which we take one document from the collec-
tion at random: If we know the number of relevant documents in the collection,
say 100 documents are relevant, and we know the total number of documents
in the collection, say 1 million, then the quotient of those two defines the prob-
ability of relevance P(R=1) = 100/1,000,000 = 0.0001. Suppose furthermore
that P(Dy) is the probability that a document contains the term k with the
sample space {0, 1}, (0=the document does not contain term k, 1= the docu-
ment contains term k), then we will use P(R, Dy,) to denote the joint probability
distribution with outcomes {(0, 0), (0, 1), (1, 0) and (1, 1)}, and we will use
P(R|Dy) to denote the conditional probability distribution with outcomes {0,
1}. So, P(R=1|Dy=1) is the probability of relevance if we consider documents
that contain the term k.

Stephen Robertson and Karen Sparck-Jones based their probabilistic re-
trieval model on this line of reasoning (Robertson and Sparck-Jones 1976). They
suggested to rank documents by P(R|D), that is the probability of relevance
R given the document’s content description D. Note that D is here a vector
of binary components, each component typically representing a term. In the
probabilistic retrieval model the probability P(R|D) has to be interpreted as
follows: there might be several, say 10, documents that are represented by the
same D. If 9 of them are relevant, then P(R|D) = 0.9. To make this work in

30

practice, we use Bayes’ rule on the probability odds P(R|D)/P(R|D), where
R denotes irrelevance. The odds allow us to ignore P(D) in the computation
while still providing a ranking by the probability of relevance. Additionally, we
assume independence between terms given relevance.

P(RID) _ P(DIR)P(R) _ Il P(Dx|R)P(R)

P(RID) P(DIR)P(R) [l P(D[R)P(R)

(1)

Here, Dy denotes the kR component (term) in the document vector. The
probabilities of the terms are defined as above from examples of relevant docu-
ments. A more convenient implementation of probabilistic retrieval uses the
following three order preserving transformations. First, the documents are
ranked by sums of logarithmic odds, instead of the odds themselves. Sec-
ond, the a priori odds of relevance P(R)/P(R) is ignored. Third, we subtract
> log(P(Dy = O|R)/P(Dj = 0|R)), i.e., the score of the empty document,
from all document scores. This way, the sum over all terms, which might be
millions of terms, only includes non-zero values for terms that are present in the
document.

matChing—Score(D) = E log (k |§) (k O|R) (2)
k € mat P(Dy=1|R) P(Dx=0|R)
match-
ing terms

In practice, terms that are not in the query are also ignored in Equation 2.
Making full use of the probabilistic retrieval model requires two things: examples
of relevant documents and long queries. Relevant documents are needed to
compute P(Dg|R), that is, the probability that the document contains the term
k given relevance. Long queries are needed because the model only distinguishes
term presence and term absence in documents and as a consequence, the number
of distinct values of document scores is low for short queries. For a one-word
query, the number of distinct probabilities is two (either a document contains
the word or not), for a two-word query it is four (the document contains both
terms, or only the first term, or only the second, or neither), for a three-word
query it is eight, etc. Obviously, this makes the model inadequate for web
search, for which no relevant documents are known beforehand and for which
queries are typically short. However, the model is helpful in for instance spam
filters. Spam filters accumulate many examples of relevant (no spam or ‘ham’)
and irrelevant (spam) documents over time. To decide if an incoming email is
spam or ham, the full text of the email can be used instead of just a few query
terms.

5 Language modeling

Language models were applied to information retrieval by a number of re-
searchers in the late 1990’s (Ponte and Croft 1998; Hiemstra 1998; Miller et al.
1999). They originate from probabilistic models of language generation devel-
oped for automatic speech recognition systems in the early 1980’s. Automatic

31

speech recognition systems combine probabilities of two distinct models: the
acoustic model, and the language model. The acoustic model might for in-
stance produce the following candidate texts in decreasing order of probability:
“food born thing”, “good corn sing”, “mood morning”, and “good morning”.
Now, the language model would determine that the phrase “good morning” is
much more probable, i.e., it occurs more frequently in English than the other
phrases. When combined with the acoustic model, the system is able to de-
cide that “good morning” was the most likely utterance, thereby increasing the
quality of the system.

For information retrieval, language models are built for each document. By
following this approach, the language model of the NVTI newsletter you are
reading now would assign an exceptionally high probability to the word “theory”
indicating that this document would be a good candidate for retrieval if the
query contains this word. Language models take the following starting point:
Given D — the document is relevant — the user will formulate a query by using
a term 71" with some probability P(T'|D). The probability is defined by the text
of the documents: If a certain document consists of 100 words, and of those
the word “good” occurs twice, then the probability of “good” given that the
document is relevant is simply defined as 0.02. For queries with multiple words,
we assume that query words are generated independently from each other, i.e.,
the conditional probabilities of the terms 77,75, - given the document are
multiplied:

P(T1, Ty, --|D) = HP(Ti!D) (3)

Note that the notation P(...) is overloaded. Any time we are talking
about a different random variable or sample space, we are also talking
about a different measure P. So, one equation might refer to several
probability measures, all ambiguously referred to as P. Also note that
random variables like D and 7T might have different sample spaces in
different models. For instance, D in the language modeling approach
is a random variable denoting “this is the relevant document”, that has
as possible outcomes the identifiers of the documents in the collection.
However, D in the probabilistic retrieval model is a random variable that
has as possible outcomes all possible document descriptions, which in
this case are vectors with binary components dx that denote whether a
document is indexed by term k or not.

As a motivation for using the probability of the query given the document,
one might think of the following experiment. Suppose we ask one million mon-
keys to pick a good three-word query for several documents. Each monkey will
point three times at random to each document. Whatever word the monkey
points to, will be the (next) word in the query. Suppose that 7 monkeys acci-
dentally pointed to the words “information”, “retrieval” and “model” for docu-
ment 1, and only 2 monkeys accidentally pointed to these words for document
2. Then, document 1 would be a better document for the query “information
retrieval model” than document 2.

32

The above experiment assigns zero probability to words that do not occur
anywhere in the document, and because we multiply the probabilities of the
single words, it assigns zero probability to documents that do not contain all
of the words. For some applications this is not a problem. For instance for a
web search engine, queries are usually short and it will rarely happen that no
web page contains all query terms. For many other applications empty results
happen much more often, which might be problematic for the user. Therefore, a
technique called smoothing is applied: Smoothing assigns some non-zero proba-
bility to unseen events. One approach to smoothing takes a linear combination
of P(T;|D) and a background model P(T;) as follows.

P(Ty,---,T,|D) = H(AP(TilD) + (1-X)P(T3)) (4)

The background model P(T;) might be defined by the probability of term occur-
rence in the collection, i.e., by the quotient of the total number of occurrences
in the collection divided by the length of the collection. In the equation, A
is an unknown parameter that has to be set empirically. Linear interpolation
smoothing accounts for the fact that some query words do not seem to be related
to the relevance of documents at all. For instance in the query “capital of the
Netherlands”, the words “of” and “the” might be seen as words from the user’s
general English vocabulary, and not as words from the relevant document he /she
is looking for. In terms of the experiment above, a monkey would either pick
a word at random from the document with probability A or the monkey would
pick a word at random from the entire collection. A more convenient implemen-
tation of the linear interpolation models can be achieved with order preserving
transformations that are similar to those for the probabilistic retrieval model
(see Equation 2). We multiply both sides of the equation by IL,(1-X)P(T;) and
take the logarithm, which leads to:

P(T;|D
matching-score(d) = Z log(1 + 1(;?;'12)). 1i)\) (5)
k € match-
ing terms

Language models are well-suited in situations that require searching for doc-
uments that are similar to a query. Instead of modeling what a relevant doc-
ument looks like, as done by the probabilistic model, the language modeling
approach simply returns the document that is most similar to the query. As
such a language modeling approach is well-suited for search systems that get ad
hoc, short queries, as is for instance the case in web search.

6 Google’s page rank model

When Sergey Brin and Lawrence Page launched the web search engine Google in
1998 (Brin and Page 1998), it had two features that distinguished it from other
web search engines: It had a simple no-nonsense search interface, and, it used

33

a radically different approach to rank the search results. Instead of returning
documents that closely match the query terms, they aimed at returning high
quality documents, i.e., documents from trusted sites. Google uses the hyperlink
structure of the web to determine the quality of a page, called page rank. Web
pages that are linked at from many places around the web are probably worth
looking at: They must be high quality pages. If pages that have links from other
high quality web pages, for instance DMOZ or Wikipedia!, then that is a further
indication that they are likely to be worth looking at. The page rank of a page
d is defined as P(D = d), i.e., the probability that d is relevant, exactly as it is
used in the language modeling approach of Section 5 as well. It is defined as:

1
P(D=d) = (1-) —i)P(D=d|D= 6
(D=d) = (A-A)—o + ”i\h%;t()d =i)P(D=d|D=1) (6)

If we ignore 1=/ #pages for the moment, then the page rank P(D = d) is
recursively defined as the sum of the page ranks P(D =) of all pages ¢ that
link to d, multiplied by the probability P(D=d|D =1) of following a link from :
to d. One might think of the page rank as the probability that a random surfer
visits a page. Suppose we ask the monkeys from the previous section to surf the
web from a randomly chosen starting point 4. Each monkey will now click on a
random hyperlink with the probability P(D = d|D = i) which is defined as one
divided by the number of links on page i. This monkey will end up in d. But
other monkeys might end up in d as well: Those that started on another page
that happens to link to d. After letting the monkeys surf a while, the highest
quality pages, i.e., the best connected pages, will have most monkeys that look
at it.

The above experiment has a similar problem with zero probabilities as the
language modeling approach. Some pages might have no links pointing to them,
so they will get a zero page rank. Others might not link to any other page, so
you cannot leave the page by following hyperlinks. The solution is also similar
to the zero probability problem in the language modeling approach: We smooth
the model by some background model, in this case the background is uniformly
distributed over all pages. With some unknown probability A a link is followed,
but with probability 1 — A a random page is selected, which is like a monkey
typing in a random (but valid) URL.

Page rank is a so-called static ranking function, that is, it does not depend on
the query. It is computed once off-line at indexing time by iteratively calculating
the page ranks of pages at time ¢ + 1 from the page ranks calculated in the
iteration at time t until they do not change significantly anymore. Once the
page rank of every page is calculated it can be used during querying. One
possible way to use page rank during querying is as follows: Select the documents
that contain all query terms and rank those documents by their page rank. In
practice, web search engines like Google use many more factors in their ranking
than just page rank alone.

Isee http://dmoz.org and http://wikipedia.org

34

7 Putting things together

There is no such thing as a dominating model or theory of information retrieval,
unlike the situation in for instance the area of databases where the relational
model is the dominating database model. In information retrieval, some models
work for some applications, whereas others work for other applications. For
instance, the probabilistic retrieval model of Section 4 might be a good choice if
examples of relevant and non-relevant documents are available; language models
in Section 5 are helpful in situations that require models of language similarity;
and the page rank model of Section 6 is often used in situations that need
modeling of more of less static relations between documents. Despite their
differences, these three models all use probability theory. This brings up the
questions: Could we combine the models in one coherent model? and, What
would such a model look like?

Let’s consider the scenario of searching scientific papers as for instance done
by Citeseer, Google Scholar or Scopus?, that is, given a text query, for instance
“theory of information retrieval”, the system should retrieve the most impor-
tant research papers in the field. To find the most important research papers
on the theory of information retrieval, we need a model that fulfills the fol-
lowing requirements: First and foremost, an important research paper should
mention the query terms “theory”, “information” and “retrieval” more often
than we would expect in random texts. Second, the paper should be cited a lot,
preferably by papers that are cited a lot themselves. Third, the paper should
fulfill a number of simple criteria and intuitions that we have about good re-
search papers, such as 1) it should be written recently; 2) it should be written
in an ISI-rated journal; 3) it should contain examples; 4) it should contain real
program code, etc.

1. The paper should mention the query terms

To fulfill the first requirement, i.e., to find papers that use similar language as
our query, a language modeling approach would be appropriate. So, we assign
the result of Equation 4 to every document. Note however that Equation 4
defines the probability of a query given a document, but obviously, the system
should rank by the probability of the documents given the query. These two
probabilities are related by Bayes’ rule as follows.

P(Ty,T3,---,Tn|D)P(D)

P(DIT17T27"'7Tn) - (7)
P(T17T2a"'aTn)

The left-hand side of Equation 7 cannot be used directly because the inde-
pendence assumption presented above assumes terms are independent given the
document. So, in order to compute the probability of the document D given the
query, we need to multiply Equation 4 by P(D) and divide it by P(Ty,---,T,).
Again, as stated in the previous paragraph, the probabilities themselves are

2http://citeseerx.ist.psu.edu, http://scholar.google.com, and http: / /scopus.com

35

of no interest, only the ranking of the document by the probabilities is. And
since P(Ty,---,T;,) does not depend on the document, ranking the documents
by the numerator of the right-hand side of Equation 7 will rank them by the
probability given the query. This shows the importance of P(D), the marginal
probability, or prior probability of the document, i.e., it is the probability that
the document is relevant if we do not know the query (yet). But how to define
P(D) properly?

2. The paper should be cited a lot

In fact P(D) defines a static ranking function as described earlier for the page
rank model of Section 6. If one research paper cites another, the cited paper is
endorsed by the citing paper. Interestingly, Brin and Page (1998) were inspired
by citation analysis when developing page rank, and they call the hyperlink
graph a citation graph in their paper. So, the page rank model would be an
excellent model to fulfill requirement 2, and since the page rank score is really
a document prior P(D) it can be easily combined with the language modeling
score as shown by Equation 7. So, in terms of the language modeling approach,
static rankings are simply document priors, i.e., the a-priori probability of the
document being relevant, that should be combined with the probability of terms
given the document. Document priors can be easily combined with standard
language modeling probabilities and are as such powerful means to improve the
effectiveness in web search (Kraaij et al. 2002).

3. Intuitions about good research papers

Our third requirement lists a number of intuitions about the properties of a
good research paper. Let’s assume that these properties are easily detected for
a paper. So, for every document we know if it is: 1) written recently (for in-
stance after 2004), 2) published in an ISI-rated journal, 3) containing examples,
4) containing real code. However, are these 4 properties all equally important?
If not, how important is each property? Could it be that some properties are not
important at all? It might not surprise the reader at this point that the prob-
abilistic retrieval model of Section 4 is able to answer these questions. As said,
the probabilistic retrieval model needs examples of relevant and non-relevant
documents, in this case examples of important research papers and unimpor-
tant research papers. Suppose we ask a group of users to use a basic version
of our system for some time, and to rate the research papers found for each
query as important or not important. Using this data, we can estimate for each
document its probability of relevance given its 4 properties. This probability
can be combined with the page rank model by using it in Equation 6 to replace
1y #pages- Lhe resulting random surfer of this model follows citations with some
probability A, but selects a “random” page by the probability of relevance given
the document properties with probability 1 — .

36

Discussion

Let’s again explain our model’s implications by the analogy of monkeys. Sup-
pose we ask the monkeys from the previous sections to follow random citations
in research papers. Instead of starting from a completely random paper they are
more likely to start from papers that have a high probability of relevance given
their properties, and each time they are allowed to follow a citation, they might
also (with probability 1 —) return to the important papers. If, after letting
them surf around for a while, the number of monkeys on each paper does not
change significantly anymore, we ask them to stop following citations. Instead
they pick three random words from the paper in which they ended up, one word
at a time.

The process is defined in such a way that every research paper has a very
small probability of having a monkey ending up there that also picked the words
“theory”, “information”, and “retrieval”’. The document with the highest prob-
ability of this event is most likely to be an important paper on the theory of
information retrieval.

8 Conclusion and further reading

This paper describes three information retrieval models in a tutorial style in
order to explain the consequences of modeling assumptions. Once the reader
is aware of the consequences of modeling assumptions, he or she will be able
to choose a model of information retrieval that is adequate in new situations.
Although each model is well-suited for certain applications and not so useful
for others, their modeling assumptions do not necessarily contradict each other,
and unified modeling approaches are certainly possible.

A much more elaborate version of this paper that covers eight models in-
stead of only three can be found in the book by Goker, Davies, and Graham
(2009). The book focuses on current trends and achievements in information
retrieval. It provides a basis for understanding recent developments in the field
and outlines directions for information search technologies in the near future
and beyond. The book contains exercises, making it a good candidate for infor-
mation retrieval courses in both undergraduate and graduate programs.

References

Brin, S. and L. Page (1998). The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems 30(1-7), 107-117.

Goker, A., J. Davies, and M. Graham (eds.) (2009). Information Retrieval:
Searching in the 215¢ Century. Wiley.

Hiemstra, D. (1998). A linguistically motivated probabilistic model of in-
formation retrieval. In Proceedings of the Second FEuropean Conference

37

on Research and Advanced Technology for Digital Libraries (ECDL), pp.
569-584.

Kraaij, W., T. Westerveld, and D. Hiemstra (2002). The importance of
prior probabilities for entry page search. In Proceedings of the 25th ACM
Conference on Research and Development in Information Retrieval (SIG-

IR’02), pp. 27-34.

Miller, D., T. Leek, and R. Schwartz (1999). A hidden Markov model in-
formation retrieval system. In Proceedings of the 22nd ACM Conference
on Research and Development in Information Retrieval (SIGIR’99), pp.
214-221.

Ponte, J. and W. Croft (1998). A language modeling approach to information
retrieval. In Proceedings of the 21st ACM Conference on Research and
Development in Information Retrieval (SIGIR’98), pp. 275-281.

Robertson, S. and K. Spérck-Jones (1976). Relevance weighting of search
terms. Journal of the American Society for Information Science 27, 129—
146.

38

Infinite streams

Jorg Endrullis; Clemens Grabmayer]
Dimitri Hendriks} and Jan Willem Klop$

February 6, 2009

Abstract

Infinite streams of data are interesting from various points of view: Theo-
retically, because they are a paradigm example for the application of coal-
gebraic techniques as well as infinitary rewriting techniques. Practically,
because infinite streams arise naturally in several applications concerning
data transmissions. And graphically, because they can be visualized by
‘drawing turtles’ as graphic trajectories that display curious patterns, from
aesthetically beautiful to intractably chaotic. In this note we discuss some
of these aspects.

1 Background and context

The background and context of this note is the work done during the last three
years in the framework of NWO BRICKS-project Infinity, a cooperation project
of VU Amsterdam, CWI Amsterdam, and Utrecht University. The main objec-
tive of that work is to study infinite objects, typically given by recursion equa-
tions, from various points of view, to wit, proof theory (find complete proof
systems and their relations), rewrite theory (in particular infinitary rewriting),
and coalgebraic techniques. The present authors at the VU and the UU were es-
pecially concerned with the specialized area of infinite streams over the natural
numbers or booleans 0, 1. In particular we zoomed in on the problem of recog-
nizing the well-definedness of recursive stream specifications, better known as
‘productivity” after a proposal of Dijkstra [7], using familiar operators such as
tail, zip, even, odd, etc. In fact we outlined a rather expressive format of such
stream operators or functions, called the pure stream format, and proved de-
cidability of productivity for recursive stream definitions staying within in the
pure format.

*Dept. of Computer Science, Vrije Universiteit Amsterdam, e-mail: joerg@ few.vu.n1 .
Dept. of Philosophy, Universiteit Utrecht, e-mail: clemens@phil.uu.nl .

!Dept. of Computer Science, Vrije Universiteit Amsterdam, e-mail: diem@cs.vu.nl .

§ Dept. of Computer Science, Vrije Universiteit Amsterdam, e-mail: jwk@es.vu.nl.

39

2 History: streams in various disciplines

Infinite streams, also called infinite sequences, infinite words, or w-words, are
the subject of study in several disciplines. A landmark was the work of Axel
Thue, who devised in 1906 infinite sequences of symbols avoiding certain sim-
ple patterns such as squares ww or cubes www where w is a finite word. He
introduced the famous sequence 0110100110010110. .. that is obtained from the
morphism 0 — 01, 1 — 10 with initial word 0. This sequence is cube-free and
turned out to be ubiquitous indeed (see [1]), and was rediscovered by Marston
Morse in 1921 in the mathematical context of dynamical systems and ergodic
theory. The Thue-Morse sequence is also known to be an ‘automatic sequence’
(see [2]), and in particular it is a morphic sequence or DOL sequence. In the
terminology of [2], the sequence is obtained by a ‘substitution’, another word
for morphism.

So infinite streams (we will often just call them streams) arise in theoretical
computer science, in particular in the areas of formal languages and combina-
torics, and also in mathematics, with applications in dynamical systems and
number theory. They also appear on the more practical side of computer sci-
ence where functional programming languages reside [17].

3 Productivity

The notion of productivity (sometimes also referred to as liveness) was first
mentioned by Dijkstra [7]. Since then several papers [18, 15, 5,11, 17, 4] have
been devoted to criteria ensuring productivity. Technically, the common essence
of these approaches is a quantitative analysis, in terms of a quantitative in-
put/output behaviour of a stream function f by a ‘modulus of production” v :
Nk — N with the property that the first vi(ni, ...,ny) elements of f(t1, ..., tk)
can be computed whenever the first n; elements of t; are defined. We have
adopted and elaborated this approach; in [9, 10, 8] we describe a calculus by
means of which we can compute composition, infimum and fixed points of
periodically increasing production functions.

A general observation is that productivity is in some sense the infinitary
analogon of finitary termination, a notion that is widely studied in term rewrit-
ing, and for which there nowadays exists an extensive tool technology.

Let us now consider two easy examples, that illustrate the essence of the
productivity problem. A specification of the Thue-Morse stream is given in
Figure 1. For this specification it is fairly easy to see, or even to prove, that it is
productive in the sense that unfolding (by infinitary rewriting [12], to be pre-
cise) the definitions will never stagnate, but will ‘always eventually’ produce
more elements of the stream. In short, the specification is productive.

Now let us consider a second example:

J=0:1:even(J) (1)

40

M = 0: zip(inv(M), tail(M))

tailix:0) =0 zip(x: o,T) = x: zip(T, o)
even(x: o) = x: odd(o) inv(0: o) =1:inv(o)
odd(x : o) = even(o) inv(l1:0) =0:inv(o)

Figure 1: A pure specification for the Thue—Morse stream.

where even is defined as before. Although at first glance this specification looks
perfectly OK, it nevertheless is not productive: it only produces 4 elements and
then continues with infinitely long unproductive calculations. It will produce
an infinitary normal form, namely 0:1:0:0:even®, but this is not good enough:
we want infinite normal forms built from constructors only, not including un-
evaluated function calls.

These two examples are setting the scene. In more complicated specifica-
tions it is not easy to see whether they are productive or not. In fact, the notion
is in general undecidable. So we have to find a restricted format for which
productivity is still decidable, but such that it is still sufficiently expressive.

In [9, 8, 10] we have defined and analyzed such a restrictive yet expressive
format. We will refrain here from stating the full technical definition, but a
good first impression is given by the examples in this section. Basically, the
specification is a layered one: in the top-layer, there is a recursive definition of
the intended stream constant, like M; the recursive definition may actually be
a system of recursive equations. In the second layer, a declaration of stream
functions is given, like zip. In the third and last layer, we declare the data func-
tions involved. The whole specification consists of orthogonal rewrite rules,
thereby guaranteeing confluence, and other useful properties.

Now for this restricted format we do have decidability. And not only theo-
retical decidability, but practical decidability. We have developed a tool, avail-
able at http://infinity.few.vu.nl/productivity/ that accepts such
specifications, and yields the verdict “productive”, or “not productive, only
producing n elements”. The tool produces a pdf file with the productivity
analysis in full detail. An example for Thue-Morse is in Figure 2; an example
for the unproductive stream specification J is in Figure 3.

Let us consider a variation on the specification for M given in Figure 1.
There the use of the ‘fine” definition of zip is crucial. If we replace the definition
of zip by the ‘coarser’ one: zip*(x: 0,y :T) — x:y:Zip*(o,T), then the spec-
ification produces only one element. The reason is that in rewrite sequences
starting from M, the second argument of zip* will never match with a stream
constructor. The constant M rewrites, in the limit, to an infinite term with no
reducible expressions in it, and hence to an infinite normal form. However,
as mentioned before, due to the stacking of unevaluated function calls, this is
not a constructor normal form as required for productivity. The altered specifi-
cation therefore is not productive. This shows that one has to be careful when
replacing stream functions by variants that are ‘extensionally equivalent’; the

41

[M] = uM.e([zip]([inv](M), [taill(M)))
= uM.e(A(box(—F+, box(—F, M)), box(F—+F, box(——+F, M))))
—+Rr HM.e(A(box(—F+, M), box(+——F+, M)))
—g pM.box(+—+, A(box(=FF, M), box(+——F+, M)))
—Rr WM. A(box(+—+, box(—F, M)), box(+—, box(+——F+, M)))
—+r UM.A(box(F—F, M), box(++——F7F, M))
—»r A(UM.box(+—+F, M), uM.box(++—-—F+,M))
—»p A(src(oo), sre(oo))
—»R Src(oo)

Figure 2: Output of our productivity decision tool: a computation yielding that eval-
uation of the stream constant M in the specification of Figure 1 can generate infinitely
many data-elements, establishing the specification’s productivity.

[J] = uJ.e(e(box(—+—,7})) —r uJ.box(+—F, box(+—+F, box(=+F—,])))
—gr wJ.box(++—+,box(——,J)) —r uJ.box(++—+—,]) —»g src(4)

Figure 3: For the specification (1) we obtain that J is not productive (only 4 elements
can be evaluated).

property of productivity is sensitive to such replacements, due to the ‘inten-
sional’ aspect of such stream specifications.

4 Complexity

Another challenging cluster of questions concerns the logical complexity, in
terms of the classical arithmetic and analytical hierarchy, of various notions in-
volved in stream specifications. The arithmetical hierarchy classifies sets by the
complexity of first-order formulas describing them, which in turn is defined as
the number of quantifiers of the prenex normal form. The analytical hierarchy
continues the classification using second-order formulas.

We present two of the main facts:

(i) Productivity is TI3. The problem of deciding whether a given orthogo-
nal term rewriting system is productive, is T19-complete — a level of the
arithmetical hierarchy —, and thereby equivalent to the well-known uni-
form halting problem for Turing machines.

(ii) Infinitary normalization is T1}. A term rewriting system is called infinitary
normalizing if all (possibly transfinitely long) rewrite sequences end in a
(possibly infinite) normal form; the counterpart of normalization when

42

considering infinite terms. The complexity of this property exceeds the
arithmetical hierarchy and thereby classical first-order theory. Its precise
complexity is T}, a level of the analytical hierarchy.

Both results are taken from work in progress. The result in item (i) has been ob-
tained by Endrullis, Grabmayer and Hendriks, item (ii) by Endrullis, Geuvers
and Zantema.

5 Comparing Streams

How can we compare streams? Not with respect to recursion-theoretic com-
plexity, because the streams we are interested in are all computable. Some of
the tools that come to mind are Kolmogorov complexity, and the technical no-
tion known as ‘subword complexity’. With respect to this measure morphic
streams (such as Thue-Morse, Toeplitz) have complexity at most quadratic,
whereas the subfamily of sturmian streams, to which the Fibonacci stream be-
longs, have the lowest possible complexity, namely n + 1.

We will consider another approach. As we have seen, the streams Thue—
Morse and Toeplitz are strongly related, they are twin brothers, the one can
be easily converted into the other. From Thue-Morse to Toeplitz this is just
taking the differences of consecutive elements modulo 2, call this operation
diff, and the other way around undiff is equally simple. (Actually, there are two
undiff’s, undiffy and undiff;, depending on choosing the first element.) Both
transformations can be easily defined in our framework.

Another way of defining these transformation operations such as diff is by
means of a finite state transducer (FST), in which we can read in, starting at the
unique root, an infinite word o, on the way recording how each symbol of o,
depending on the current state that we reached in the FST, is transformed into
a finite (possibly empty) word.

An example is M and M/3, where M is the Morse stream and M/3 is the
stream obtained by taking every third element. Then it is not hard to find
FST’s to transform M into M/3 and M/3 back into M. We therefore define that
the ‘degree’ of M and M/3 is the same. An interesting result obtained by Sebas-
tian Stern in his recent master thesis [16] at the VU, is that every arithmetical
subsequence (in fact some more) of Morse either is eventually periodic, or is
still equivalent to Morse, in that it can be transformed back to Morse.

To make a connection with the turtle trajectories: the turtles can be seen
as FST’s where stream symbols are uniformly translated into machine instruc-
tions such as turn, etc.

To wind up this story, we get a partial order of degrees of streams, where
a degree is an equivalence class of streams modulo the equivalence obtained
by streams being interconvertible via FST’s, see Figure 4. The trivial degree
is the degree 0 of eventually periodic streams. We get an ordering between
degrees in a straightforward way. Of special interest to us are minimal non-
trivial degrees (call them “prime’ degrees), that have the property that there is

43

no non-trivial degree less than that degree. Our favourite conjecture is that the
degree of Morse is such a prime degree. Prime degrees are not hard to find,
e.g. one is the degree generated by the stream 1101001000100001000001

partial order of stream degrees, uncountabl

ascending sequence of degrees

eventually periodic streams

Figure 4: The partial order of degrees of streams.

6 Graphics

Recently, a surprising connection was discovered by Holdener and Ma [14],
who showed that there is a strong connection beween the Thue-Morse stream
and the famous snowflake of Helge von Koch [13], also from 1906. The dis-
covery was done by using ‘turtle graphics’, an endeavour that was used in the
1980’s for didactical purposes: let a turtle with a writing head and a tiny mem-
ory draw a trajectory in the plane according to a simple program describing the
elementary drawing steps. In the present case, Holdener and Ma gave the tur-
tle as program the Thue-Morse sequence, where a 0 was interpreted as: draw
a line segment of one unit length in the direction in which the write head is
positioned, 0 turn the write head over Z. The first 50 or so steps a trajectory
is drawn that crosses itself or overlaps itself, but does not evoke many asso-
ciations. However, when the drawing is continued, sometimes scaling back
the figure when it spills over the edges of the screen, a most remarkable phe-
nomenon appears: the trajectory starts to resemble the Koch snowflake. And
indeed, in the limit, one obtains precisely the snowflake. The limiting process
is interesting, in that it uses the Hausdorff metric.

Subsequently, it was pointed out by Allouche [3] that such a connection
between Thue-Morse and Koch was already implicit present in the work of

EM. Dekking [6], in the terminology of exponential sums. An even simpler
rendering was noticed by the present authors: the Toeplitz stream T, that is the
stream of ‘first differences’ of the Thue-Morse stream, considered as a turtle
program, gives the Koch snowflake right away; see Figure 10. The drawing
instructions are clear from the figure. Note that the Koch snowflake nicely
connects the Thue-Morse stream and the Toeplitz stream: the first can be read
off above the snowflake, the second below the snowflake.

Another nice exercise is to consider the Sierpinski curve, see Figure 5, with

Y.
60 f AL
0 0 <j) v
)8 i '
1

42
" C A Ab AA
VAR RSN Y VYW VY.V

£
Figure 5: Construction of the Sierpinski triangle.

0

A
&
A
A
Ad
5 A
Y. Y.Y

its associated 0-1-stream, and find a neat definition of that stream. It turns
out that the Sierpinski stream, as we will call it, belongs to a familiar fam-
ily of streams, namely the Toeplitz streams, that are in a simple sense ‘self-
generating’. Triggered by these turtle drawings, we generated several thou-
sands of such drawings, for various streams and various drawing instructions.

Several streams yield chaotic pictures, depending on the turtle instructions.
For the Fibonacci stream defined by the morphism 0 — 01, 1 — 0 starting on 0,
we often find regular, aesthetically pleasing patterns, see Figure 9.

An example of a stream whose turtle trajectories are chaotic is the Kolakoski
stream. This stream K is identical to the sequence of its ‘run-lengths’, that is,
K=2211212212211..., where the run-lengths of the alternating blocks
of similar symbols are 22 1121 22.... The Kolakoski stream can also be
specified in the format of [8], as follows:

K =1f,(2:tail(K))
f1(1:0) =1:f,(0) f12:0)=1:1:1(0)
f2(1:0)=2:f(0) f2(2:0)=2:2:f1(0)

For the turtle trajectory for K we find very chaotic patterns, see Figure 6. This
stream is the subject of many open problems.

7 Problems

We conclude by mentioning a number of areas for further developments:

(i) Integration into functional languages environments: In collaboration with
people from the functional programming community, we want to exam-
ine whether the results on automated recognition of stream productivity
[9, 10] can be used to improve compilers.

45

Figure 7: A turtle trajectory for the

Figure 6: A turtle trajectory for the Toeplitz Stre;z:.n’ which c]a]n ?e obt;z(i)ned
Kolakoski sequence K for a prefix of b;l/ t.he- m‘l’rP ’Z"; 0—11,1—-100n
2 . 106 entries. the nitial word 1.

Figure 8: A turtle trajectory for the

Mephisto Waltz, the stream which can Figure 9: A turtle trajectory for the Fi-
be obtained from the morphism 0 — bonacci stream.

001, 1 — 110 on the initial word 0.

46

morsel 0 0 10110 0110 1 0 0 1

9N
1

1 1
0 10
1
1 1
1 1 1
koch 1 1 1 1— 1 1
toepliz101 1 1010 1011 10 1

Figure 10: Construction of the Koch snowflake from the Toeplitz stream.

(i) Relation between productivity and unique definedness: There is a close con-
nection between productivity of a stream specification S and the prop-
erty of S to have a unique solution. It is easy to see that productivity im-
plies unique solvability, but the converse direction fails in general. Here
we mention a recent interesting result by Zantema giving a criterion for
unique solvability in terms of finitary termination.

(iii) Connection with finitary termination: There is a large arsenal of termination
methods in the finitary setting, which can be applied in various ways (for
example by the result mentioned in (ii)) to stream specifications.

(iv) Connection with with lambda calculus theory of Q-free Bohm Trees, i.e. totally
defined Bohm Trees.

(v) Graphical aspects: We aim to study the connections between the graphical
aspects of turtle renderings of streams, and the complexity properties of
the streams. At present this is “terra incognita” for us.

References

[1] J.-P. Allouche and]. Shallit. The Ubiquitous Prouhet-Thue-Morse Se-
quence. In Sequences and Their Applications: Proceedings of SETA '98, pages
1-16. Springer—Verlag, 1999.

[2] J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Gen-
eralizations. Cambridge University Press, New York, 2003.

[3] J.-P. Allouche and G. Skordev. Von Koch and Thue-Morse revisited, 2006.

[4] W. Buchholz. A Term Calculus for (Co-)Recursive Definitions on Stream-
like Data Structures. Annals of Pure and Applied Logic, 136(1-2):75-90, 2005.

[5] Th. Coquand. Infinite Objects in Type Theory. In H. Barendregt and
T. Nipkow, editors, TYPES, volume 806, pages 62-78. Springer-Verlag,
Berlin, 1994.

47

[6] EM. Dekking. On the distribution of digits in arithmetic sequences. In
Séminaire de Théorie des Nombres de Bordeaux, volume 12, pages 3201-3212,
1983.

[7] EW. Dijkstra. On the Productivity of Recursive Definitions, 1980.
EWD749, available at ht tp: //www.cs.utexas.edu/users/EWD/.

[8] J. Endrullis, C. Grabmayer, and D. Hendriks. Data-Oblivious Stream Pro-
ductivity. In Logic for Programming, Artificial intelligence and Reasoning 2008,
number 5330 in LNCS, pages 79-96. Springer, 2008.

[9] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Pro-
ductivity of Stream Definitions. In Proceedings of FCT 2007, number 4639
in LNCS, pages 274-287. Springer, 2007.

[10] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Pro-
ductivity of Stream Definitions. Technical Report Preprint 268, Logic
Group Preprint Series, Department of Philosophy, Utrecht University,
2008. Accepted for publication in a forthcoming special issue of TCS.
Available at http://www.phil.uu.nl/preprints/lgps/.

[11] J. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive
Systems Using Sized Types. In POPL '96, pages 410-423, 1996.

[12] J.W. Klop and R.C. de Vrijer. Infinitary Normalization. In S. Artemov,
H. Barringer, A.S. d’Avila Garcez, L.C. Lamb, and]. Woods, editors, We
Will Show Them: Essays in Honour of Dov Gabbay (2), pages 169-192. College
Publications, 2005.

[13] H. von Koch. Une méthode géomeétrique élementaire pour I'étude de
certaines questions de la theorie des courbes planes. In Acta Math., vol-
ume 30, pages 145-174, 1906.

[14] J. Ma and J.A. Holdener. When Thue-Morse Meets Koch. In Fractals:
Complex Geometry, Patterns, and Scaling in Nature and Society, volume 13,
pages 191-206, 2005.

[15] B.A. Sijtsma. On the Productivity of Recursive List Definitions. ACM
Transactions on Programming Languages and Systems, 11(4):633-649, 1989.

[16] S. Stern. The Thue-Morse Sequence. Master’s thesis, Vrije Universiteit
Amsterdam, 2008.

[17] A. Telford and D. Turner. Ensuring Streams Flow. In AMAST, pages 509—
523, 1997.

[18] W.W. Wadge. An Extensional Treatment of Dataflow Deadlock. TCS, 13:3—
15, 1981.

48

SEMIDEFINITE PROGRAMMING APPROXIMATIONS FOR STABLE SETS,
COLOURING, AND CUTS IN GRAPHS

MONIQUE LAURENT

ABSTRACT. In the recent years semidefinite programming has become a widely used tool for de-
signing better efficient approximation algorithms for hard combinatorial optimization problems.
In this note we review some constructions for nested semidefinite programming relaxations to
0/1 linear programming problems and some of their main properties. In particular we indicate
how to get more compact semidefinite programs, thus more amenable to practical computation,
using symmetry reduction. We illustrate these techniques on some basic combinatorial problems
dealing with stable sets, cuts and colouring in graphs.

1. INTRODUCTION

Combinatorial optimization deals typically with the problem of finding an optimum object
within a finite (but huge) collection of objects. Think for instance of time-tabling, or scheduling
problems, or various problems on graphs, like (1) finding a shortest path between two vertices, or
(2) finding a shortest tour traversing all edges, or (3) finding a shortest tour traversing all vertices,
or (4) finding a maximum set of pairwise non-adjacent vertices, or (5) colouring the vertices with
as few colours as possible in such a way that adjacent vertices receive distinct colours, or (6)
partitioning the vertices into two classes so as to maximize the number of edges cut by the partition,
etc. As is well known, while efficient (polynomial time) algorithms exist for the first two graph
problems (1)-(2), the last four problems (3)-(6) are NP-hard.

A typical approach to attack such hard problems is to represent the objects over which one wishes
to optimize by 0/1 vectors and to formulate the problem at hand as a 0/1 linear programming
(LP) problem, of the form

(1) max c¢fx st. Az <b andz € {0,1}",

where A is an m X n matrix, b € R™, and ¢ € R®. Without the integrality constraint on the
variable z, (1) would be an LP problem, thus solvable in polynomial time. However, adding the
integrality condition makes the problem NP-hard. With P denoting the convex hull of the feasible
solutions to (1), the objective is then to find a relaxation of the polytope P which is efficient and
tight, meaning that one can compute over it in polynomial time and that the returned solution is
close enough to the optimum over P.

Linear programming relaxations of P have been traditionnally considered. However, they are
sometimes not powerful enough and semidefinite programming, an extension of linear programming
where vector variables are replaced by matrix variables constrained to be positive semidefinite,
turns out to be a powerful technique for designing better and efficient approximation algorithms
for some problem classes. Semidefinite programming is also widely used in other areas like system
and control theory (cf. e.g. [4]), but we focus here on its application to combinatorial optimization.

We now recall a few basic facts about semidefinite programs and refer to (23, 47, 49] and
references therein for details. Let S,, denote the set of n x n symmetric matrices. A matrix X € Sp
is positive semidefinite, written as X > 0, if 4T Xu > 0 for all u € R™ or, equivalently, if there exist

49

2 M. LAURENT

vectors vy, ...,vn € R® for which X = v]v; (Vi,). The standard form of a semidefinite program
(SDP) reads
(2) sup (C,X) s.t. (4;,X)=1b; (j=1,...,m) and X = 0,

where C, A;,...,Am € Sp, b € R™ are given, X € S, is the matrix variable, and (C, X) =
Tr(CT X) is the standard inner product. The program (2) is a convex program and, when C, A; are
diagonal matrices, it reduces to a classic linear program. As one can test in polynomial time whether
a given rational matrix is positive semidefinite (e.g. using Gaussian elimination), semidefinite
programs can be solved in polynomial time to any fixed precision using the ellpsoid method (cf.
[15]). Algorithms based on the ellipsoid method are however not practical since their running time
is prohibitively high. Instead, interior-point algorithms are widely used in practice; they return an
approximate solution (to any given precision) in polynomially many iterations and their running
time is efficient in practice for medium size problems. As most currently available interior-point
algorithms are designed to take advantage of block-diagonal matrices, it is computationnally easier
to solve an SDP involving many small blocks rather than one large matrix. One way to get such
block-diagonal SDP’s is by exploiting the symmetry structure of the problem at hand (cf. Section
4); moreover one can also design the SDP relaxation to force such a symmetry structure (cf. Section
3.3).

Contents. We present in Section 2 some basic SDP bounds for stable sets, colouring and maximum
cut problems, and discuss their properties. Then we see in Section 3 how to construct hierarchies
of SDP relaxations leading to the full representation of the combinatorial problem at hand. In
Section 4 we indicate how symmetry reduction can be used to get more compact SDP programs,
and Section 5 contains a few pointers to further related results.

2. BASIC SEMIDEFINITE BOUNDS FOR STABLE SETS, COLORING AND MAXIMUM CUTS

We have chosen to illustrate the use of semidefinite programming in combinatorial optimization
on the following combinatorial problems: maximum stable sets, minimum graph coloring, and
maximum cuts in graphs. For these problems, some milestone results have been obtained in the
recent years, that spurred an intense research activity and a wealth of results for other combinatorial
optimization problems; we refer e.g. to [12, 23, 34, 38] and references therein for a detailed
exposition. In this section we introduce some basic SDP relaxations which have led to interesting
results for our three problems.

2.1. Basic SDP bounds for stable sets and colouring via Lovasz’ theta number. Let
G = (V, E) be a graph; V is the set of vertices (or nodes) (typically V' = [L,n]) and E is the set of
edges, which are pairs of distinct vertices, then said to be adjacent in G. A stable (or independent)
set in G is a set of vertices that are pairwise non-adjacent, and a (vertez) colouring of G is an
assignment of colours to the vertices in such a way that adjacent vertices receive distinct colours,
in other words, a partition of V into stable sets. Then the stable set problem asks for the stability
number o(G), defined as the maximum cardinality of a stable set in G, while the graph colouring
problem asks for the chromatic number x(G), defined as the minimum number of colours in a
vertex colouring. Both problems are NP-hard [11]. Note that

(3) x(G) > w(G),

where w(G) is the largest cardinality of a cligue (i.e., a set of pairwise adjacent vertices) in G.
Obviously, w(G) = a(G), where G is the complement of G, with the same set V of vertices and
two distinct vertices being adjacent in G precisely when they are not adjacent in G.

50

SDP BOUNDS IN COMBINATORIAL OPTIMIZATION 3

For some graphs the inequality (3) is strict. For instance, it is strict for any circuit C,, of odd
length n > 5, as w(Cy) = 2 < x(Cr) = 3, and for the complement of C,, as well. However there
are many interesting classes of graphs for which equality w(G) = x(G) holds. This is the case e.g.
for bipartite graphs, line graphs of bipartite graphs, comparability graphs, chordal graphs, and
for their complements as well. In fact the class of graphs for which equality w(G) = x(G) holds
not only for G but also for all its induced subgraphs (i.e. all those graphs that can be obtained
by deleting vertices in G) turns out to be very interesting; following Berge, graphs in this class
are called perfect graphs. Thus C, and its complement C,, are not perfect for odd n > 5. Berge
conjectured in 1962 that a graph is perfect if and only if its complement is perfect, which was
proved a few years later by Lovész [35]. Berge also conjectured that a graph is perfect if and
only if it does not contain any odd circuit of length at least 5, or its complement, as an induced
subgraph; this was proved only recently by Chudnovsky et al. [6] and is known as the strong
perfect graph theorem. It is intriguing to determine the complexity of computing (@) and x(G)
for perfect graphs. As we indicate below this can be done in polynomial time, but to show this
one has to use semidefinite programming.

Lovész [37] introduced his celebrated theta number 9(G), which serves as bound for both a(G)
and x(G). The theta number is defined via the semidefinite program

(4) 9(G) :=max Tr(JX) st. Tr(X) =1, X;; =0 (ij € E), X > 0,

where J denotes the all-ones matrix. A basic property of the theta number is that it satisfies the
so-called sendwich inequality

(5) a(G) <H(G) < x(G), or equivalently, w(G) < H(G) < x(G).

Indeed, if 15 € {0,1}V is the incidence vector of a stable set S in G, then X := 15(15)7/)S| is
feasible for (4) with objective value |S|, which gives a(G) < 9(G). On the other hand, if X is a
feasible solution to (4) and V = C; U...U Cy}, is a partition into k := x(G) cliques of G, then
k
0<) (kle, —)T X (klc, — 1v) = k°Tr(X) — k15 X1y = k(k — Tr(J X)),
h=1

which implies Tr(JX) < k and thus ¥(G) < x(G). Another basic property of the theta number is
(6) HG)H(G) > |V|, with equality if G is vertex-transitive.

Here, 9 is the ‘complementary’ graph parameter defined by 9(G) := ¢¥(G) for any graph G. This
convention is also used later for other graph parameters.

For perfect graphs, equality holds throughout in (5), which implies a(G) = 9(G) and x(G) =
Y¥(G). As the theta number can be computed in polynomial to any fixed precision, the stability
number and the chromatic number can be computed in polynomial time for perfect graphs. More-
over, a maximum stable set and a minimum coloring can also be computed in polynomial time for a
perfect graph G (by iterated computations of the theta number of certain induced subgraphs of G).
These computations thus rely on using semidefinite programming and as of today no alternative
efficient algorithm is known.

Lovész’ original motivation for introducing the theta number was to bound the Shannon capacity
of a graph G, which is defined as

(@) := klileoa(ak)%.

Here G* denotes the product of k copies of G, with vertex set V¥ and with two disctinct vertices
(u1,...,ux) and (vi,...,vx) being adjacent in G* if up = vy, or upvy, € E for each position
h =1,...,k If we view V as an alphabet and adjacent vertices u,v € V as letters that can be

51

4 M. LAURENT

confounded, then (G*) is the maximum number of words of length k that cannot be confounded,
since for any two of them there is a position h where their hth letters are not confoundable. One
can verify that a(GF) > a(G)* and 9(G*) < 9(G)*, which implies

o(G) < 6(G) < ¥G).

Therefore, when G is perfect, ©(G) = ¥(G) can thus be computed via semidefinite programming.
Lovész could also compute the Shannon capacity of the circuit Cs using the theta number. He
showed that ©(Cs) = /5, which follows from a(CZ) > 5 (easy to verify) and 9(Cs) = v5; the
latter follows using (6) since Cs is vertex-transitive and isomorphic to its complement. The exact
value of the Shannon capacity of Cy, is not known for odd n > 7. (Cf. [27] for more details.)

Although it permits to compute the stability and chromatic numbers of perfect graphs, the
theta number can be a poor approximation for general graphs. Indeed the gap between a(G)
and 9(G) (or 9(G) and x(G)) can be as large as |V|'~¢ (for any € > 0) [9]. Nevertheless much
work has been done on approximating a(G) and x(G) with SDP. For example, it is shown in [21]
how to colour in randomized polynomial time a k-colourable graph with O(nl_% +/log n) colours
[21] using variations of the SDP (4) combined with sophisticated rounding techniques, and the
behaviour of the theta number for Erdés-Renyi graphs is analysed in [7].

2.2. The Goemans-Williamson approximation algorithm for maximum cuts. Another
successful application of semidefinite programming to combinatorial optimization is the celebrated
0.878-approximation algorithm of Goemans and Williamson [14] for the max-cut problem, which
we sketch below.

Given a graph G = (V, E) (|[V| = n) with edge weights w € RE, the cut determined by S C V' is
the set of edges having their endnodes in distinct classes of the partition (S,V \ S). The maz-cut
problem asks for the maximum weight of a cut in G, denoted as mc(G). While a minimum weight
nonempty cut can be found in polynomial time (using flow algorithms), the max-cut problem is
NP-hard [11].

Erdds proposed in 1967 the following simple 1/2-approximation algorithm. Colour the vertices

v1,...,vn of G with two colours blue and red as follows: First colour v; blue. If vy,...,v; are
coloured, colour vy blue if the total weight of the edges joining v;11 to the red vertices in
{v1,...,v;} is more than the total weight of the edges joining v;y1 to the blue vertices in this

set, and colour v;;1 red otherwise. Then the cut given by this partition of V' has weight at
least w(E)/2 and thus at least mc(G)/2. There is an even easier randomized 1/2-approximation
algorithm. Namely colour randomly each node blue or red independently, with probability 1 /2.
The probability that an edge belongs to the cut determined by this partition is 1/2 and thus the
expected weight of this cut is w(E)/2. Can one do better than 1/27?

It is unfortunately not known how to do better using LP relaxations. Consider, for instance, the
classic LP relaxation for max-cut obtained from the triangle inequalities: z;; — T3 — zjx < 0 and
Tij + Tik + Tk < 2 for 4,4,k € V. While this LP relaxation permits to solve max-cut exactly for
graphs with no Ks-minor (including planar graphs) (3], it is however a weak relaxation for general
graphs, as the integrality gap can be as large as 2 — € (V € > 0) [41].

However, an improved approximation algorithm was designed by Goemans and Williamson [14]
using semidefinite programming. For this, it is convenient to model the max-cut problem using
+1-valued variables as

(7 mc(G) = max Z wii (1 — z25)/2 st. x € {£1}"
ijEE

52

SDP BOUNDS IN COMBINATORIAL OPTIMIZATION 5

Observe that the matrix X := zz! satisfies the constraints: X = 0, X;; =1 (i € V), and
rank(X) = 1. If we omit the rank condition, then we find the semidefinite relaxation

(8) sdp(G) == max Y wii(1— Xi)/2 st X =0, Xuu=1(€V),
ijeE

which can be solved in polynomial time (to any fixed precision). Let X be an optimum solution
to (8). Goemans and Williamson [14] propose the following randomized rounding procedure for
constructing a good cut from X. Say X is the Gram matrix of vy,...,v, € R?, ie. X;; = vlv;
Vi,j € V. Consider a random unit vector r € R™. The hyperplane with normal r splits V' into two
sets, depending on the sign of rTv; (i € V), giving = € {£1}" with z; = 1 iff r7v; > 0. As the
probability that an edge ij lies in the cut determined by this partition is equal to % arccos(v; v;),
the expected weight of this cut is equal to

S w ‘arccos(v v;) _ 3 e L™ viv; 2 arccos(v] v;)
OO T

¥ ij T
T 2 T 1—viv;
ij€E ijeE i 72

> agw sdp(G) > 0.878567 mc(G),

after setting agw = mingcy<r %1_—(’:9055 and observing that agw > 0.878567. This implies
me(G) > agw sdp(G). This randomized algorithm can be derandomized to yield in polynomial
time a deterministic cut achieving the same performance ratio.

Much research has been done trying to improve the Goemans-Williamson approximation algo-
rithm for max-cut and to extend and apply it to other problems. Although improved algorithms
could be designed for special graph classes, no better approximation ratio could yet be shown for
the general max-cut problem. It has in fact been shown that agw is the best possible approxi-
mation ratio for max-cut that can be achieved in polynomial time (if P # NP) under the Unique
Games Conjecture [22]. On the negative side, Hastad [20] proved that no polynomial time approx-
imation algorithm exists for max-cut with performance guarantee better than 16/17 ~ 0.94117 (if
P # NP). We now indicate a natural extension to +1-quadratic programming:

9 A) = T A
(9) m(A) == max o Az,

and its SDP relaxation:

n
(10) sdp(4) := max Z Aijulu; = maxTr(AX) st. X =0, Xy =1 (i €V),
ULy Un €87 E g1
where A € R™™ and S™~1 is the unit sphere in R*. When A = L,,, the Laplacian matrix of (G, w)
(with (Law)ii = 2 j1ijeE Wis> (Ly)ij == —wj; if ij € E and 0 otherwise), we find the programs

(7) and (8), in which case m(Ly)/sdp(Ly) > 0.8785. For general A > 0, the above analysis can
be adapted to show the inequality: m(A) > 2 sdp(A) [40]. The constant of Grothendieck is a
fundamental tool in functional analysis, which corresponds to the integrality gap of the following
analogues of the programs (9)-(10):

n m
T

mg(A) = max y' Az = E E Axiy;
() xe{:tl}", yG{ﬂ:l}m Pt ¥ Rk 2N R

n m

T

sdpn(A4) := max E Aiu; v;
pG() U sy yUL yoeey U ESTFT—1 i—1j_zl 7% Y

where A € R™*"_ Grothendieck (1953) showed the existence of a smallest constant K¢ satisfying
sdpe(A) < Kegmg(A) for all A € R™™. Tt is known that Kg > 1.68 [42] and K¢g < m ~

53

6 M. LAURENT

1.782 (cf. [1]). This has been used e.g. for deriving an efficient approximation algorithm for the
cut-norm of matrices [1], and an extension to quadratic forms on graphs can be found in 2]

3. HIERARCHIES OF SEMIDEFINITE PROGRAMMING RELAXATIONS

We saw above how to define in a natural way a semidefinite relaxation for the maximum stable
set problem (via the SDP (4)) and for the max-cut problem (via the SDP (8)). Several procedures
have been proposed for constructing nested (increasingly tight) SDP relaxations (cf. [28, 39, 45],
also [29, 34] and references therein). We briefly sketch some of these constructions.

3.1. The N,-operator of Lov&sz-Schrijver. Lovész and Schrijver [39] introduced the N,-
operator which, given a convex set K C [0,1]V, produces the convex set N4 (K) consisting of the
vectors € RY for which

1 zT

) T — Xej
(11) 3X st. z = diag(X), (m x

X.
)zo, ek ifz; £0, €K ifz; #1.
J

1-— .’L‘j
Let K denote the convex hull of the integer points in K , thus the polytope we are interested in.
We have:

K; C Ny (K)C K.

Indeed, if z is an integer point in K, then X := zz7 satisfies the conditions in (11), which shows
the left inclusion, and the right inclusion follows easily after noting that Xe; = 0if z; = 0 and
Xe; =z ifx; = 1, and z, X are as in (11).

Defining iteratively N (K) := N, (N*"1(K)) fort > 2, Ni(K) = N.(K), we obtain a hierarchy
of SDP relaxations of K, which finds K; in n = |V| iterations, i.e. NZ(K) = K;. An important
algorithmic property is that, for any fized ¢, if one can optimize in polynomial time over K, then
the same holds for N* (K).

As in [39], consider for instance the case when K = FR(G), the fractional stable set polytope
of G, defined by the constraints 0 < z; < 1 ((eV)yandz;+z; <1 (ij € E). Then Ky is the
convex hull of the incidence vectors of all stable sets in G. In fact, K = N (K) for any t > a(G).
Moreover, for t = 1, N, (K) gives an SDP bound for a(G) which is at least as strong as the theta,
number, and Ny (K) = Kj when G is a perfect graph. As a clique and a stable set share at
most one node, the clique inequalities 2 iccTi < 1 (C clique in G) are valid for K;. They are in
fact also valid for N, (K). However, if we omit positive semidefiniteness in (11) (leading to the
N-operator), then t = w(G) — 2 iterations of the N-operator are needed before N *(K) satisfies all
clique inequalities. Thus adding the semidefinite condition definitely helps!

3.2. A simple recipe for SDP relaxations. Here is a simple construction for SDP relaxations,
leading to refinements of the hierarchy of Lovéasz and Schrijver. The basic idea is to ‘lift’ a vector
z € {0,1}" to a higher dimensional vector y = (x5 :=I];e; %s)1c.4 containing the products of the
zi’s indexed by a given subset 4 of the full power set P(V). Then the matrix Y = yy” obviously
satisfies the constraints: (i) ¥ > 0, (ii) Yy = 1, and (iii) the (I, J)-entry Y; ; depends only
on the union I U J (as Yr1,; = z, 7). A matrix indexed by A and satisfying (iii) is of the form
Ma(z) := (2107)1,7¢4 for some z € RAVA (where AUA={IUJ|I,J € A}), and is known as a
(combinatorial) moment matriz. Moreover, if z satisfies a linear constraint Y iev @i%; < ag, then
the lifted vector y satisfies (ag — Yicv aizi)yyL = 0, yielding the localizing constraint M 4(az) = 0,
after setting (az); := aozr — Y ;o a;zrygy for all 1.

54

SDP BOUNDS IN COMBINATORIAL OPTIMIZATION 7

The next lemma implies that, when imposing the ‘full’ SDP constraints Mpv) (z) = 0 combined
with the “full’ localizing constraints, we obtain an exact (SDP or LP) representation of the original
0/1 problem.

Lemma 1. The following assertions are equivalent for z € RP(V),

(i) Mpw)(2) =0.
(i) Ygscscv (DI Vlys >0 for all SCV.
(iii) z = D gcy Aszs for some As >0, after setting zs := ([Lic;(1s)i)1cv € {0, 1}P(V).

If we choose A = P,(V), the collection of all subsets of V' with size at most ¢, then we obtain
the SDP hierarchy of Lasserre [28]. If we choose A = P(U) for all U € P¢(V'), then we obtain the
hierarchy of Sherali-Adams [45] (thus an LP hierarchy, in view of Lemma 1). In fact, the Lasserre
hierarchy refines both the Lovasz-Schrijver and the Sherali-Adams hierarchies [29].

Applying this to the fractional stable set polytope K = FR(G), the Lasserre relaxation of order
t gives the upper bound

2€RP2:(V)

(12) las(G) := max > 2z st zp=1, Mp(2) =0, z;; =0 (ij € E)
€V

for the stability number a(G), while the analogous program

(13) 0(G@):= min (20 st Mp,)(2) 20, 5 =1(GEV), 25 =0 (ij € E)

las 2€RP2(V

®

las

yields a lower bound for the chromatic number x(G). In fact, ¥ (G) remains bounded above by

the fractional chromatic number:

(14) Xf(G) := min Z As s.t. z Agls =1y, Ag > 0.
S stable S stable

That is, wl(;g < x5 < x for all t. Moreover, the pair (las(t),z/)l(:;) is equal to (9,9) for t = 1, to
(e, x7) for t > c, and it satisfies the analogue of the reciprocity relation (6) for any t > 1 [16, 17].
This construction also applies to max-cut (and to (9)). However, as variable z is now +1-valued
(instead of 0, 1-valued), one should now require that the (I, J)-th entry in a moment matrix Ma(z)
depends only on the symmetric difference IAJ (instead of the union TUJ). At ordert =1 we find
the SDP relaxation (2) (or (10)); geometric properties of these relaxations can be found in [31].

3.3. A more economical block-diagonal hierarchy. The SDP (12) involves a matrix of size
O(n?), which is thus too costly to compute for large n or t. More economical block-diagonal
variations of this hierarchy are proposed in [19], based on the following idea: Instead of the
full matrix Mp,(v)(2), consider several smaller blocks arising from principal submatrices of it.
Namely, for any T C V of size t — 1, consider the matrices M(T; z) indexed by Ugcr As, where
Ag :={S,SU{i} | i € V}. These matrices need only the components of z indexed by P1(V) (as
opposed to Py (V) in (12)) and each M(T';) has a very symmetric block-structure. For instance,
for T = {1,2},

A@(z) A1 (Z) AQ(Z) A12(Z) A@(Z) — Al(z) - AQ(Z) + A12(Z) ~0
Al(z) A]_(Z) Alg(z) Alz(z) Al(z) — A12(Z) > 0

Ax(z) Ana(z) Ax(z) An(z) Az(z) — A12(2) =0

Ap(2) Aw2(z) Ana(z) Ap(z) A1a(2) = 0

M(T;z) = 0=

55

8 M. LAURENT

(where blocks are indexed by A@,A{l},A{z},A{LQ}). A simple adaptation of Lemma 1 implies
that each M(T; z) can be block-diagonalized, namely

(15) M(T;z) =0 > (-1)SVSl4gq(z)=0 vSCT.
S$'8CS'CT

In this way we obtain a block-diagonal hierarchy, where the condition ‘Mp,(vy(2)’ is replaced by
‘M(T;z) = Oforall T C V with |T| = t — 1’; the localizing conditions can be analogously replaced
by block-diagonal conditions. This block-diagonal hierarchy can be seen as an explicit analogue
of the Lovasz-Schrijver hierarchy, which is simpler (not recursive) and more economical (as it uses
less variables and constraints); cf. [19] for details.

Let £ denote the block-diagonal variation of the parameter las® from (12), thus defined by

(16) £9(G) =max >z st.zg=1, M(T;2) =0 (T C V, IT| =t—1), z;; =0 (ij € E).
iev

Then, (1) = ¢, and there is still convergence in a(G) steps to the stability number. Analogously,

let ® denote the block-diagonal variation of 1/)1(2 in (13). In view of (15), £® (or ¥®) can be

computed via an SDP with (tfl) 2!=1 matrices of order n + 1 and O(n'*1) variables, as compared

to one matrix of order O(n*) and O(n?!) variables for the parameter (12).

The parameter £®) (¢ = 2,3) has been tested in (19] on the class of Paley graphs P,;; P, has
vertex set the field Fy; on ¢ elements (¢ = 1 mod 4), with an edge ij iff i — j is a square in F,.
Here are some numerical values: For g = 401, ¥ ~ 20.02, £ ~ 12.7, 63 ~ 10, a = 9; for ¢ = 809,
¥~ 284, 6@ ~ 17.3, 1® ~ 134, o = 11 (the computation involves symmetry reduction, cf.
[16, 19] for details). The bound ¢? was also computed for the class of Hamming graphs, enabling
to get better upper bounds for the coding problem; details are given in Section 4.

3.4. SDP hierarchies converging to the chromatic number. We saw above some construc-
tion of SDP bounds for the chromatic number, however these bounds remain below the fractional
chromatic number. We now give a ‘recipe’ for constructing bounds that may go beyond the frac-
tional chromatic number. Following [16, 17], consider the operator ¥ that maps a graph parameter
B to the graph parameter W4 defined by

Vs(G) ==min ¢ st. BGUK,) = |V(G)],

where G; := GOK is the Cartesian product of G and the complete graph K;. Then, ¥ is monotone
non-increasing on the interval [%, x| and maps it onto the interval [w, x]- In particular, ¥, = y,
which is a well known reduction of graph colouring to the stable set problem. Moreover, ¥ maps
the whole interval [lxﬂ, a] onto the single parameter x and the whole interval l k}ﬂ, X| onto w; as an
application, no parameter in these intervals can be computed in polynomial time unless P=NP.

An important property of ¥ is that it maps any hierarchy converging to o to a hierarchy
converging to the chromatic number xy. While the block-diagonal hierarchy ¥%® remains below Xfs
we have ¥, (G) = x(G) for t > |V(G)|. Moreover,

Ty > yp® > %

We have tested the parameter ¥, on Kneser graphs. For these graphs it is known that the
fractional chromatic number is close to the clique number and thus any bound for the chromatic
number which remains below the fractional chromatic number is of no use.

The Kneser graph K (n,r) has vertex set the set of words of weight r in {0,1}", with two words

adjacent if their Hamming distance is 2r. It is known that o — ¢ — (:f:;), w=|n/r], xy =n/r,

56

SDP BOUNDS IN COMBINATORIAL OPTIMIZATION 9

and x = n — 2r +2 [36]. But numerical tests confirm that the parameter W) indeed goes beyond
the fractional chromatic number (cf. [16, 18]). Here are some numerical values: For K (12,3),

X5 =4< Uz =5< T,m =6 for K(36,6), x; =6 < ¥p» =7 < ¥yn =9. (Here £2) is the
+ +

strengthening of ¢ () obtained by adding non-negativity constraints on the variables.) See the next
section for some comments on the computation of W, for Kneser graphs.

4. SYMMETRIC REDUCTION AND SOME COMPUTATIONAL RESULTS

We briefly indicate here how symmetry can be used to block-diagonalize SDP’s and get more
compact programs. (See e.g. [24, 46] for details.) Consider the SDP (2) where the matrices
C, A; are indexed by a set V, |[V| = n. Assume that (2) is invariant under action of a group
G of permutations of V. That is, if X is feasible for (2) and o € G, then the matrix o(X) :=
(Xo@s),005))ijev is again feasible for (2). As (2) is a convex program, we may restrict w.l.o.g. the
matrix variable X to lie in the algebra

Ag :={X | o(X) =X Vo € G}

of invariant matrices under action of G. Then, the number of distinct entries in X is at most
the dimension d of Ag, which is given by the number of distinct orbits of V x V under action
of G. Thus there is already a gain in the number of variables when the dimension is small.
Moreover, one can also reduce the size of the matrices in the SDP. As explained in [25], one
can indeed replace the SDP by an equivalent SDP involving d x d matrices. One can do even
better. Indeed the algebra Ag is a matrix *-algebra, which means that it is closed under addition,
multiplication, scalar multiplication, and transposition. Hence, by Wedderburn’s theorem, it can
be block-diagonalized. That is, there exists a unitary matrix U and s,n1,k1,...,ns, ks € N such
that the set U* AgU = {U*XU | X € Ag} consists of all the block-diagonal matrices with blocks
A, € CM*™ (repeated ki times), ..., A5 € C™*" (repeated k, times), so that d = 37, nZ. In
this way one can replace the SDP (2) involving one n X n matrix X by an equivalent SDP involving
s smaller matrices Az, ..., A,. This reduction is particularly interesting when the n;’s are small
compared to n.

Let us indicate how this can be applied to compute the block-diagonal bound 22 from (16)
for Hamming graphs. Given D C [1,n], the Hamming graph G = H (n, D) has vertex set {0,1}",
with an edge between two words when their Hamming distance lies in D. Computing the sta-
bility number of Hamming graphs is a basic question in coding theory. Hamming graphs have
a rich automorphism group G, arising from all permutations of the n coordinates combined with
‘switchings’ (replacing all words i by i @ i, for a given word i0)-

Consider first the theta number of H(n,D), given by the SDP (4). Then the matrix X is
indexed by {0,1}" and is invariant under action of G precisely when the entries Xi,; depend only
on the Hamming distance between i,j. The corresponding algebra Ag is known as the Bose-
Mesner algebra, which is commutative with dimension n+ 1. Thus it can be diagonalized, and the
theta number of H(n,D) can in fact be computed via an LP of size n, which gives the bound of
Delsarte [8].

Consider now the second order bound £ (H(n, D)) in the block-diagonal hierarchy (16). Note
first that in (16) it suffices to consider just one of the matrices M ({io}; z) (for example for the zero
word ig = 0) because the graph H(n, D) is vertex-transitive. Next note that the matrix M{io}; 2)
has the block form
at BT

(17) A
B

(S
by &

57

10 M. LAURENT

(blocks being indexed by 9, {0,1}", and {{0,i} | i € {0,1}"}). Here, A can be assumed to be
invariant under action of G and thus lies in the Bose-Mesner algebra. Matrix B can be assumed
to be invariant under action of the subgroup Gy of G consisting of its elements fixing 0, i.e. B; ;
depends only on the weights of i, j and i & J. The corresponding algebra Ag, is known as the
Terwilliger algebra of the Hamming scheme, whose dimension is equal to O(n®). Schrijver [44]
has computed the explicit block-diagonalization for the Terwilliger algebra. Thus the condition
B = 0 (of size 2") can be replaced by requiring that several blocks be positive semidefinite, of
sizes n,...,n, with >, n? = O(n®). Thanks to this symmetry reduction, one is able to compute
the parameter £(2)(H (n, D)) for n up to 28, which gives upper bounds on the stability number of
H(n, D), improving the bound of Delsarte (cf. numerical results in (26, 32, 44]).

The computation of the parameter ¥,z for Kneser graphs G = K (n,r) deserves a comment. In
order to compute ¥z (G), we need to compute £ (GOIK,) for several values of t. Again it suffices
to consider in (16) one matrix M ({u}; z) for just one node u of GOK;. This matrix has again the
shape (17), but A and B are now indexed by V(GOK,), of cardinality ¢|V|. However, one can
exploit the invariance under the permutations of K to replace the condition M ({u};2) =0 by a
new SDP condition involving four matrices, of sizes 2|V (G)|+1, 2|lV(G)|,|V(G)],|V(G)|. Thus, the
parameter ¢ which determines the size of M({u};2) comes now as a numerical parameter within
these four matrices. Next one can exploit the invariance under the automorphism group of the
Kneser graph to further reduce these four matrices (this involves again the Terwilliger algebra).
We refer to [16, 18] for details on the symmetry reduction and for computational results.

5. FINAL REMARKS

We have sketched how to use semidefinite programming for designing hierarchies of convex
relaxations for 0/1 linear programming problems. Note that an analogous construction applies
more generally to polynomial optimization problems, where the ob jective is a polynomial function
and the constraints are polynomial equations or inequalities; cf. e.g. the survey [33] for details.

There are many interesting aspects that have been investigated about these hierarchies of SDP
relaxations. A first example is the notion of rank of a hierarchy, defined as the smallest number of
iterations needed to find the original 0/1 polytope. For instance, the rank of the N, -operator has
been studied e.g. for the max-cut, stable set and traveling salesman problems. For instance, the
rank of the N, operator for the stable set polytope of G is at most a(G) and it can be equal to
a(G) (cf. [13]). As another example, it is shown in [30] that the rank of the Lasserre hierarchy for
the cut polytope of K, is at least [n/2], and equality is conjectured.

An intriguing question is how to use higher order relaxations to get better approximation algo-
rithms. This is by no way easy. As mentioned earlier, for max-cut, one cannot hope to do better
than with the order 1 relaxation if the unique game conjecture holds. The following negative result
is shown in [10] dealing with LP hierarchies for max-cut: The integrality gap of the basic LP
relaxation by triangle inqualities can be as large as 2 — € (Ve > 0), and this is still true for the
LP relaxation obtained after ¢ iterations of the Sherali-Adams procedure, or after adding all valid
inequalities for the cut polytope on at most ¢ nodes, for any fixed ¢{. Moreover, it is shown in [43]
that after Qc(n) iterations of the Lovész-Schrijver N operator, one gets an LP relaxation with the
same duality gap 2 — e. If one recalls that the basic order 1 SDP relaxation for max-cut permits
to achieve the Goemans-Williamson approximation ratio 1 /0.878, then this is a good illustration
of the strength of the positive semidefinite condition.

On the positive side, the authors of [5] are able to exploit higher order relaxations in the Lasserre
hierarchy for the maximum independent set in a 3-uniform hypergraph. Namely, for fixed v > 0,

58

SDP BOUNDS IN COMBINATORIAL OPTIMIZATION 11

if there is an independent set of size at least yn, then they can construct one of size n*(7*) using
the relaxation of order ©(1/v?).

One may also want to exploit the structure of the problem at hand, like sparsity, in order to get
more economical relaxations. For instance, when G has small tree-width, one can design sparse
relaxations leading to a compact (LP or SDP) representation of the problem (cf. {33, Sec. 8.2],

[48]).
REFERENCES
[1] N. Alon and A. Naor. Approximating the cut-norm via Grothendieck’s inequality. SIAM Journal on Computing
35:787-803, 2006.
[2] N. Alon, K. Makarychev, Y. Makarychev, and A. Naor. Quadratic forms on graphs. Inventiones Mathematicae
163(3):499-522, 2005.
[3] F. Barahona and A.R. Mahjoub. On the cut polytope. Mathematical Programming, 36:157-173, 1986.
[4] 8. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan. Linear Matriz Inequalities in System and Control
Theory. Volume 15 of Studies in Applied Mathematics, SIAM, 1994.
[5} E. Chlamtac and G. Singh. Improved approximation guarantees through higher levels of SDP hierarchies.
APPROX 2008.
(6] M. Chudnovsky, N.Robertson, P.Seymour, and R.Thomas. The strong perfect graph theorem. Annals of Math-
ematics 164:51-229, 2006.
[7] A. Coja-Oghlan. The Lovész number of random graphs. Combinatorics, Probability and Computing 14:439-465,
2005.
[8] P. Delsarte. An Algebraic Approach to the Association Schemes of Coding Theory. [Philips Research Reports
Supplements (1973) No. 10] Philips Research Laboratories, Eindhoven, 1973.
[9] U. Feige. Randomized graph products, chromatic numbers, and the Lovész d-function. Combinatorica 17:79-90,
1997.
[10] W. Fernandez de la Vega and C. Kenyon-Mathieu. Linear programming relaxations of maxcut. SODA 2007,
pages 53-61.
[11] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness,
San Francisco, W.H. Freeman & Company, Publishers, 1979.
[12] M.X. Goemans. Semidefinite Programming in Combinatorial Optimization. Mathematical Programming
79:143-161, 1997.
[13] M.X. Goemans and L. Tungel. When does the positive semidefiniteness constraint help in lifting procedures?
Mathematics of Operations Research 26:796-815, 2001.
[14] M.X. Goemans and D. Williamson. Improved approximation algorithms for maximum cuts and satisfiability
problems using semidefinite programming. Journal of the ACM 42:1115-1145, 1995.
[15] M. Grétschel, L. Lovész and A. Schrijver. Geometric Algorithms and Combinatorial Optimization, Springer,
1988.
[16] N. Gvozdenovié. Approzrimating the Stability Number and the Chromatic Number of a Graph via Semidefinite
Programming. Ph.D. thesis, Univ. Amsterdam, 2008.
[17] N. Gvozdenovi¢ and M. Laurent. The operator ¥ for the Chromatic Number of a Graph. SIAM Journal on
Optimization 19(2):572-591, 2008.
[18] N. Gvozdenovi¢ and M. Laurent. Computing semidefinite programming lower bounds for the (fractional) chro-
matic number via block-diagonalization. SIAM Journal on Optimization 19(2):592-615, 2008.
[19] N. Gvozdenovié, M. Laurent and F. Vallentin. Block-diagonal semidefinite programming hierarchies for 0/1
programming. Operations Research Letters 37:27-31, 2009.
[20] J. Hastad. Some optimal inapproximability results. In Proceedings of the 29th Annual ACM Symposium on the
Theory of Computing, ACM, New York, pp. 1-10, 1997.
[21] D. Karger, R. Motwani, and M. Sudan. Approximate graph colouring by semidefinite programming. Journal of
the Association for Computing Machinery 45:246-265, 1998.
[22] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th Annual ACM Symposium
on the Theory of Computing, ACM, New York, pp. 767-775, 2002.
[23] E. de Klerk. Aspects of Semidefinite Programming - Interior Point Algorithms and Selected Applications.
Kluwer, 2002.
[24] E. de Klerk. Exploiting special structure in semidefinite programming: a survey of theory and applications.

Preprint, 2008. Available at http://www.optimization-online.org/DB_HTML/2008/0/2107.htm1

59

12

M. LAURENT

[25] E. de Klerk, D. Pasechnik, A. Schrijver. Reduction of symmetric semidefinite programs using the regular *-

representation. Mathematical Programming, 109(2-3):613-624, 2007.

[26] E. De Klerk, D.V. Pasechnik. A note on the stability number of an orthogonality graph. European Journal of

Combinatorics 28:1971-1979, 2007.

[27] D.E. Knuth. The sanwich theorem. Electronic Journal of Combinatorics 1:1-48, 1994.
[28] J.B. Lasserre. An explicit exact SDP relaxation for nonlinear 0—1 programs. In K. Aardal and A.M.H. Gerards,

eds., Lecture Notes in Computer Science 2081:293-303, 2001.

[29] M. Laurent. A comparison of the Sherali-Adams, Lovész-Schrijver and Lasserre relaxations for 0-1 programming.

Mathematics of Operations Research 28(8):470-496, 2003.

[30] M. Laurent. Lower bound for the number of iterations in semidefinite relaxations for the cut polytope. Mathe-

matics of Operations Research, 28(4):871-883, 2003.

[31] M. Laurent. Semidefinite relaxations for Max-Cut. In The Sharpest Cut: The Impact of Manfred Padberg and

His Work. M. Grotschel (ed.), pages 257-290, MPS-SIAM Series in Optimization 4, 2004.

[32] M. Laurent. Strengthened semidefinite programming bounds for codes. Mathematical Programming 109(2-

3):239-261, 2007.

{33] M. Laurent. Sums of squares, moment matrices and optimization over polynomials. In Emerging Applications

of Algebraic Geometry, Vol. 149 of The IMA Volumes in Mathematics and its Applications, M. Putinar and
S. Sullivant (eds.), Springer, pages 157-270, 2009.

[34] M. Laurent and F. Rendl. Semidefinite Programming and Integer Programming. In Handbook on Discrete

Optimization, K. Aardal, G. Nemhauser, R. Weismantel (eds.), pp. 393-514, Elsevier B.V., 2005.

[35] L. Lovész. Normal hypergraphs and the perfect graph conjecture. Discrete Mathematics 2:253-267, 1972.
[36] L. Lovész. Kneser’s conjecture, chromatic number and homotopy. Journal of Combinatorial Theory, Series A

25(3):319-324, 1978.

[37] L. Lovész. On the Shannon capacity of a graph. IEEE Transactions on Information Theory I'T-25:1-7, 1979.
[38] L. Lovész. Semidefinite programs and combinatorial optimization. In Recent Advances in Algorithms and Com-

binatorics, B.A. Reed and C.L. Sales (eds.), Springer, 2003.

[39] L. Lovasz and A. Schrijver. Cones of matrices and set-functions and 0 — 1 optimization. STAM Journal on

Optimization 1:166-190, 1991.

[40] Y. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization. Optimization Methods and Software

9:141-160, 1998.

[41] S. Poljak and Zs. Tuza. On the expected relative error of the polyhedral approximation of the max-cut. Oper-

(42]

ations Research Letters 16:191-198, 1994.
J.A. Reeds. A new lower bound on the real Grothendieck constant, 1991. Avalaible at
http://www.dtc.umn.edu/ "reedsj/bound2.dvi

[43] G. Schoenebeck, L. Trevisan, and M. Tulsiani. Tight integrality gaps for Lovéasz-Schrijver LP relaxations of

vertex cover and max cut. ECCC, Report 132, 2006.

[44] A. Schrijver. New code upper bounds from the Terwilliger algebra and semidefinite programming. IEEE Trans-

actions on Information Theory 51:2859-2866, 2005.

[45] H.D. Sherali and W.P. Adams. A hierarchy of relaxations between the continuous and convex hull representa-

tions for zero-one programming problems. SIAM Journal on Discrete Mathematics 3:411-430, 1990.

[46] F. Vallentin. Symmetry in semidefinite programs. Linear Algebra and its Applications 430:360-369, 2009.
[47] L. Vandenberghe and S. Boyd. Semidefinite Programming. SIAM Review 38(1):49-95, 1996.

(48]

[49]

M.J. Wainwright and M.I. Jordan. Treewidth-based conditions for exactness of the Sherali-Adams and Lasserre
relaxations. Univ. California, Berkeley, Technical Report 671, 2004.
H. Wolkowicz, R. Saigal, L. Vandeberghe (eds.). Handbook of Semidefinite Programming, Kluwer, 2000.

CENTRUM VOOR WISKUNDE EN INFORMATICA (CWI), KRUISLAAN 413, 1098 SJ AMSTERDAM, THE NETHERLANDS
E-mail address: monique@cwi.nl

60

Practising logic through the web

Freek Wiedijk

Institute for Computing and Information Sciences
Radboud University Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Abstract. We present the ProofWeb system for practising natural de-
duction in predicate logic and for remotely working with the Coq proof
assistant. The ProofWeb system can be used for free, both for try-
ing it out as a guest as well as for hosting computer labs for logic
and proof assistant courses, on the Nijmegen ProofWeb server http:
//proofuweb.cs.ru.nl/.

A computer lab for a logic course

Suppose you are a lecturer at a computer science department who has to teach
the introductory logic course. That course teaches natural deduction in three
standard logics:

— Propositional logic
— Predicate logic
— Predicate logic with equality

You would like the computer to be used by your students for their logic exercises.
What should you use?

In the Netherlands many of these courses currently use the Jape system
from the UK [3]. It allows students to check simple deductions with a computer
program that has a pleasant point-and-click interface. However, the Jape system
has restrictions. It is not possible to save an unfinished deduction and later
continue working on it. It is not possible to have types for variables. It is not
possible to reason about time in the deductions, or to reason arithmetically
in other contexts for that matter. This all makes the use of Jape inconvenient
for larger examples. Also, with Jape there is no easy way to run a course in
an centrally organized manner. Each student has to install Jape on their own
system, it is hard to keep track of what the students are doing with it, and
grading students’ work is labor intensive.

Here we present the ProofWeb system, as a better system to be used for
computer labs for logic courses. ProofWeb was developed as a joint effort between
the Radboud University Nijmegen and the Free University Amsterdam, in a
small education innovation project funded by the Surf Foundation called Web-
deductie voor het onderwijs in formeel denken. ProofWeb already has been, and
still is, used in about a dozen logic courses in various universities.

61

2 Freek Wiedijk

The Coq proof assistant as a web application

Proof assistants are systems for developing and checking deductions on the com-
puter. These systems are both used for verification of the correctness of software
and hardware, as well as for checking the correctness of mathematics. There
are several proof assistants to choose from (important examples are PVS, HOL,
Isabelle, ACL2, The B Method, Twelf, and in some sense even Jape). One of
the best proof assistants currently available is the Coq system developed at IN-
RIA in France [4,1]. Coq has been used for many impressive projects, like the
validated Compcert C compiler which compiles a large subset of C to assembly
for the PowerPC family of processors, getting a performance similar to the gec
compiler with the first level of optimization turned on [10,2], and the formal
proof of the Four Color Theorem by Georges Gonthier [6].

Before the ProofWeb project, Henk Barendregt had for a long time already
been asking for a web interface to the Coq system, to allow people to work
with Coq without first having to go through the trouble of installing it on their
computer. There had been a project in which mathematicians from Russia were
supposed to contribute (they would be paid a fixed price for each lemma proved),
but before they had Coq running correctly on their systems the project already
was over. If a Coq environment had been available on the web this might have
gone differently. But Henk wanted a web interface to Coq for a more ambitious
goal: to have the whole world help with encoding all of mathematics in Coq.
This would be an important step to make that come about.

Cezary Kaliszyk, one of the PhD students in Henk’s group in Nijmegen, hap-
pened to be an expert on Web interfaces. His PhD research was on making proof
assistants more friendly, but his master’s thesis had been about Web interfaces.
When he heard about Henk’s wish, in a Christmas holiday he whipped together
a simple but nice web interface to the Coq system. This interface later was ex-
tended into the ProofWeb system. Although various people were involved in that
project, Cezary remained the sole developer of the system.

The ProofWeb system
The ProofWeb system has the following distinctive properties:

— With ProofWeb the students work with the Coq proof assistant. Their input
is not being pre-processed by the ProofWeb interface; i.e., the text that
ProofWeb users are typing are actual Coq proof scripts. With ProofWeb the
students are working with an industrial strength interactive theorem prover,
with the full power of that system available to them from the start.

— ProofWeb shows deductions in a style that matches as closely as possible the
deductions the way they are presented in elementary logic courses. Although
ProofWeb shows the Coq presentation of the state of the proof, there is also
a display that really looks like the diagrams from logic textbooks. In fact,
the ProofWeb system intentionally was made fully compatible with a good
logic textbook: Logic in Computer Science: Modelling and Reasoning about

62

Practising logic through the web 3

Systems by Michael Huth and Mark Ryan [7]. If a course uses this book then
ProofWeb is a good choice for the lab work of that course. And if a course
wants to use ProofWeb for the lab work, then this book is a good textbook
to be used for the non-computer part of the course.

— ProofWeb comes with an extensive manual [8] that both summarizes natural
deduction for predicate logic and presents all the details of working with the
ProofWeb system. This manual can be downloaded as a PDF file from the
ProofWeb web site.

— ProofWeb comes with a collection of more than a hundred simple logic ex-
ercises to be worked with the ProofWeb system. Courses can have their own
set of exercises, but this set is a good default choice for an introductory logic
course.

— To use ProofWeb there is no need to install special software. In fact ProofWeb
does not even use a plug-in. All that one needs is a compatible web browser.
ProofWeb users can access ProofWeb from anywhere on the internet. (For
example, if necessary, students might go into an internet café to finish their
homework.)

— ProofWeb has good interfaces for both students and teachers to manage their
courses. Students will see a list of exercises, and the status of these exercises.
Teachers will see a list of students, and the status of those students.

ProofWeb for teaching Coq

ProofWeb can be used for teaching logic to undergraduate students, but it also
can be used for teaching proof assistants to graduate students. In fact, about
half of the current ProofWeb courses are type theory courses that teach the Coq
system.

In such courses the exercises do not have the shape of having to prove a
single first order formula. Instead they are long files with many lemmas, where
the students have to fill in the proofs of those lemmas. Generally students then
will have to complete one such an exercise per week.

Fitch-style natural deduction

There are two styles of presenting natural deduction proofs on paper. The more
commonly taught style was introduced by Frederic Fitch. These proofs consists
of lines that are grouped together either by boxes around them or by having
‘flags’ with assumptions in the margin. (Using flags is typical of the way this
kind of proof is taught at the Technical University of Eindhoven. This style
originated in the Automath project from the sixties and seventies.)

Fitch-style proofs are the style of natural deduction presented in the book
by Huth and Ryan that ProofWeb especially was designed to match. However,
Fitch-style proofs do not exactly have the structure of Coq proofs. For this
reason, in the ProofWeb project one of the major difficulties was to get Fitch-
style deduction to work well with the Coq system [9].

Here is a Fitch-style proof as shown in ProofWeb:

63

4 Freek Wiedijk

1 Hi: 3Ix, (P x V —-Q a) assumption

2 H2: Q a assumption
b

3 H3: PbV —Q a ‘ assumption

4 H4: P b assumption

5 dx, P x di 4

6 H5: —-Q a assumption

7 1 -e 6,2

8 dx, P x le 7

9 dx, P x Ve 3,4-5,6-8

10 Jx, P x de 1,3-9

11 Qa— dx, Px —i 2-10

12 3x, P xV -Qa) - Qa— dx, Px —i 1-11

When doing the proof, this picture will be growing in the lower-right pane of
the ProofWeb window. Here is what the ProofWeb interface looks like halfway
down a simpler example:

Eile. ' Edit View ‘Web - Go- Bookmarks::Tabs Help

43 hd A ﬁ E%fhnpfa‘proofwehcsrunlfindexhtml » §
Back By Home ¢ 2P

3 & 80 § @ File Display Templates Backward: Forward Query Debug Help Logout

{* Exercise 1 *) 1 subgoal

Require lmport Prooftleb, H:zAaMNE

Yariables A B ¢ Prop. A
Theoren prop_D01 3 (A /A B) -> A,
Proof ,

imp_i H.

Qed,

[

A A B azsumption

]
3 AxB+A +i1-2

= hilpprookieb oo ru nbURS vourse D8 Himl

Both the Coq view of the proof as well as the textbook display of the proof
are present simultaneously. To our surprise when working on exercises like this,
students mostly completely ignored the Coq proof state in the upper-right pane
and just looked at the lower-right.

Gentzen-style natural deduction

The other style of natural deduction that is commonly used was introduced
by Gerhard Gentzen. This is the style that is used in the textbook Logic and
Structure by Dirk van Dalen [5]. (ProofWeb is not completely compatible with
this book — we decided that internal consistency was important, so we had our
Gentzen-style proof display be influenced by the Huth and Ryan conventions —
but it comes very close.)

In the case of Gentzen-style natural deduction the proofs look like trees,
growing upward from the statement that is proved. When doing this kind of

64

Practising logic through the web 5

proof on paper one generally gets space problems fast, but in a computer one
does not have this problem, as in that case one has scroll bars.
Here is the same example proof, but this time presented in Gentzen style:

[-Q al®™ [Q al™

[P b]™ _ 1
[PbV —Q al® 3x, Px Ix, P x
[3x, (P x V -q a)]l® Jx, P x
dx, P x

Qa— dx, Px

Jx, P xV Qa) - Qa— Ix, Px

The ProofWeb code that generated both proofs (which just are different displays
of the same proof) was:

Require Import ProofWeb.

Variable P Q : D -> Prop.
Variable a : D.

Theorem example :
exi x, (P(x) \/ "Qa)) -> Q(a) —> exi x, P(x).
Proof.
imp_i H1.
imp_i H2.
exi_e (exi x, (P(x) \/ "Q(a))) b H3.
exact H1.
dis_e (P(®) \/ ~Q(a)) H4 H5.
exact H3.
exi_i b.
exact H4.
fls_e.
neg_e (Q(a)).
exact Hb5.
exact H2.
Qed.

This is an actual Coq input script. The commands occurring in this script can be
selected from menu’s in the ProofWeb interface, so the students do not need to
know these commands by heart. Also, these commands are extensively explained
in the ProofWeb manual.

The student’s view of ProofWeb

When a student follows a course that uses the ProofWeb system, he or she will
go to the ProofWeb server that hosts the course. The student will then select the

65

le

Ve [H4,H5]
de [H3]
—i[H2]
—i[H1]

6 Freek Wiedijk

course from a menu, login in to the system by entering username and password,
and then will be presented with the list of exercises:

Eile : Edit = ¥iew Web' "Go Bookmarks Iabs Help

“\f 14 b s o ﬁ ;gQ}:hnp.!/proow«eh.csrunl/lugged.html

Back P HOME. £ s e e
- .

2. 085 Easy | Resef pred 085.v f

pred 088v fEasy iviscaed - Resetpred 068y |

. prap go1v | Elementary

aplete (why?) | - Resel g 001y |

| Erop_unnzlv i Easy _Reset prog_6oz.v
prop.003¥ | Medinm “Resetprop 005 |
z o s Er—is Resetprumt)USv
prop 012y iElementary it Reset prop 02w %

prop_B14.y § Easy

; prop:m&v iEasy

* Resetprop 014y |

| Resetmprogwm Ev E

prop 017 | Easy ':}" e " Reset prop 017.v°
o B00B 018 | Elementory 2 s oocned Beselprop 018 |

Each exercise will have four possible statuses, which are color coded:

Gray Not touched
Red Incomplete
Orange Correct
Green Solved

The goal for the student will be to work the exercises until the traffic lights
in his list are all green. (The orange status means that the proof is correct,
but that the student used proof steps that are not allowed for the course. For
example Coq’s powerful automation will not be allowed when doing exercises in
elementary logic.)

The teacher’s view of ProofWeb

The teacher can login for the course too, but with the teacher’s interface. He or
she then will be presented with a table that lists all the students, with for each
student a count of how many of that student’s exercises there are of each of the
four different colors. The teacher also can login as if he were a specific student,
to grade exercises or maybe help the student with finding a solution.

Apart from this, the teacher interface also allows the teacher to add student
logins or change passwords. Finally there is a button for downloading all files
for the course as a big tar file, for archival purposes at the end of a course.

The MathWiki project

ProofWeb was primarily developed for logic education, but in N ijmegen we have
more ambitious goals for it.

Recently, the project MathWiki: a Web-based Collaborative Authoring Envi-
ronment for Formal Proofs was funded in NWO’s vrije competitie, to develop a

66

Practising logic through the web 7

system to be called MathWiki. This system will be a cross between a Wikipedia
for mathematics, and the system that Henk was dreaming of where all the world
would help build a Coq version of all of mathematics. An aspect of the Math-
Wiki project is that it is not supposed to be just about the Coq proof assistant.
Eventually many proof assistants will be available through our interface.

A prototype of MathWiki already was developed and a web page about this
work can be found on the ProofWeb server.

Trying it?

If you want to try ProofWeb: it is completely free. Currently there are three way
of using the system:

— First you can access it as a guest user. For this you do not even need to
register. Just click the Guest login button. It is probably useful to first look
through the ProofWeb manual to know what to do next.

— Second you can host courses on the Nijmegen ProofWeb server. For this, just
send an email message to proofweb@cs.ru.nl.

— Third, you might not trust someone else with your students’ data. In that
case you might download the ProofWeb server and install it on a machine
of your own. At the moment this has not been done much, and you will
probably need some help from Nijmegen with that, which of course we will
be happy to provide.

We hope ProofWeb will be useful both for logic teaching, as well as for exposing
more students to proof assistants. If you have any questions about ProofWeb,
just send mail to

proofweb@cs.ru.nl
Or you should surf to
http://proofweb.cs.ru.nl/

and take a look for yourself at the system that we developed.

References

1. Yves Bertot and Pierre Castéran. Coq’Art: The Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.

2. Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal Verification of a C
Compiler Front-end. In FM 2006: Int. Symp. on Formal Methods, volume 4085 of
Lecture Notes in Computer Science, pages 460-475. Springer, 2006.

3. Richard Bornat and Bernard Sufrin. Jape’s Quiet Interface. In N. Merriam, editor,

User Interfaces for Theorem Provers (UITP ’96), Technical Report, pages 25-34.

University of York, 1996.

Coq Development Team. The Coq Proof Assistant Reference Manual, 2008.

5. Dirk van Dalen. Logic and Structure. Springer, 4th edition, 2004.

e

67

10.

Freek Wiedijk

Georges Gonthier. A computer-checked proof of the Four Colour Theorem. (http:
//research.microsoft.com/~gonthier/4colproof .pdf), 2006.

Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reason-
ing about Systems. Cambridge University Press, 2nd edition, 2004.

Cezary Kaliszyk, Femke van Raamsdonk, Freek Wiedijk, Hanno Wupper, Maxim
Hendriks, and Roel de Vrijer. Deduction using the ProofWeb system. Technical
Report ICIS-R08016, Institute for Computing and Information Sciences, University
of Nijmegen, 2008.

Cezary Kaliszyk and Freek Wiedijk. Merging procedural and declarative proof. To
be published in the proceedings of TYPES 2008, 2009.

Xavier Leroy. Formal Certification of a Compiler Back-end, or: Programming a
Compiler with a Proof Assistant. In POPL’06, Charleston, South Carolina, USA,
2006.

68

Statuten

Artikel 1.
1. De vereniging draagt de naam: “Nederlandse Vereniging voor Theoretische
Informatica”.
2. Zij heeft haar zetel te Amsterdam.
3. De vereniging is aangegaan voor onbepaalde tijd.
4. De vereniging stelt zich ten doel de theoretische informatica te bevorderen
haar beoefening en haar toepassingen aan te moedigen.

Artikel 2.
De vereniging kent gewone leden en ereleden. Ereleden worden benoemd door
het bestuur.

Artikel 3.
De vereniging kan niet worden ontbonden dan met toestemming van tenminste
drievierde van het aantal gewone leden.

Artikel 4.
Het verenigingsjaar is het kalenderjaar.

Artikel 5.
De vereniging tracht het doel omschreven in artikel 1 te bereiken door
a. het houden van wetenschappelijke vergaderingen en het organiseren van sym-
posia en congressen;
b. het uitgeven van een of meer tijdschriften, waaronder een nieuwsbrief of
vergelijkbaar informatiemedium;
c. en verder door alle zodanige wettige middelen als in enige algemene vergader-
ing goedgevonden zal worden.

Artikel 6.
1. Het bestuur schrijft de in artikel 5.a bedoelde bijeenkomsten uit en stelt het
programma van elk van deze bijeenkomsten samen.
2. De redacties der tijdschriften als bedoeld in artikel 5.b worden door het
bestuur benoemd.

Artikel 7.
Tedere natuurlijke persoon kan lid van de vereniging worden. Instellingen hebben
geen stemrecht.

Artikel 8.
Indien enig lid niet langer als zodanig wenst te worden beschouwd, dient hij de
ledenadministratie van de vereniging daarvan kennis te geven.

Artikel 9.
Teder lid ontvangt een exemplaar der statuten, opgenomen in de nieuwsbrief van
de vereniging. Een exemplaar van de statuten kan ook opgevraagd worden bij
de secretaris. Ieder lid ontvangt de tijdschriften als bedoeld in artikel 5.b.

Artikel 10.
Het bestuur bestaat uit tenminste zes personen die direct door de jaarvergader-
ing worden gekozen, voor een periode van drie jaar. Het bestuur heeft het
recht het precieze aantal bestuursleden te bepalen. Bij de samenstelling van het
bestuur dient rekening gehouden te worden met de wenselijkheid dat vertegen-
woordigers van de verschillende werkgebieden van de theoretische informatica in
Nederland in het bestuur worden opgenomen. Het bestuur kiest uit zijn midden
de voorzitter, secretaris en penningmeester.

Artikel 11.
Eens per drie jaar vindt een verkiezing plaats van het bestuur door de jaarver-

69

gadering. De door de jaarvergadering gekozen bestuursleden hebben een zit-
tingsduur van maximaal twee maal drie jaar. Na deze periode zijn zij niet
terstond herkiesbaar, met uitzondering van secretaris en penningmeester. De
voorzitter wordt gekozen voor de tijd van drie jaar en is na afloop van zijn ambt-
stermijn niet onmiddellijk als zodanig herkiesbaar. In zijn functie als bestuurslid
blijft het in de vorige alinea bepaalde van kracht.

Artikel 12.
Het bestuur stelt de kandidaten voor voor eventuele vacatures. Kandidaten
kunnen ook voorgesteld worden door gewone leden, minstens een maand voor
de jaarvergadering via de secretaris. Dit dient schriftelijk te gebeuren op vo-
ordracht van tenminste vijftien leden. In het geval dat het aantal kandidaten
gelijk is aan het aantal vacatures worden de gestelde kandidaten door de jaarver-
gadering in het bestuur gekozen geacht. Indien het aantal kandidaten groter is
dan het aantal vacatures wordt op de jaarvergadering door schriftelijke stem-
ming beslist. leder aanwezig lid brengt een stem uit op evenveel kandidaten
als er vacatures zijn. Van de zo ontstane rangschikking worden de kandidaten
met de meeste punten verkozen, tot het aantal vacatures. Hierbij geldt voor de
jaarvergadering een quorum van dertig. In het geval dat het aantal aanwezige
leden op de jaarvergadering onder het quorum ligt, kiest het zittende bestuur
de nieuwe leden. Bij gelijk aantal stemmen geeft de stem van de voorzitter (of
indien niet aanwezig, van de secretaris) de doorslag.

Artikel 13.
Het bestuur bepaalt elk jaar het precieze aantal bestuursleden, mits in overeen-
stemming met artikel 10. In het geval van aftreden of uitbreiding wordt de
zo ontstane vacature aangekondigd via mailing of nieuwsbrief, minstens twee
maanden voor de eerstvolgende jaarvergadering. Kandidaten voor de ontstane
vacatures worden voorgesteld door bestuur en gewone leden zoals bepaald in ar-
tikel 12. Bij aftreden van bestuursleden in eerste of tweede jaar van de driejarige
cyclus worden de vacatures vervuld op de eerstvolgende jaarvergadering. Bij af-
treden in het derde jaar vindt vervulling van de vacatures plaats tegelijk met de
algemene driejaarlijkse bestuursverkiezing. Voorts kan het bestuur beslissen om
vervanging van een aftredend bestuurslid te laten vervullen tot de eerstvolgende
Jaarvergadering. Bij uitbreiding van het bestuur in het eerste of tweede jaar van
de cyclus worden de vacatures vervuld op de eerstvolgende jaarvergadering. Bij
uitbreiding in het derde jaar vindt vervulling van de vacatures plaats tegelijk
met de driejaarlijkse bestuursverkiezing. Bij inkrimping stelt het bestuur vast
welke leden van het bestuur zullen aftreden.

Artikel 14.
De voorzitter, de secretaris en de penningmeester vormen samen het dagelijks
bestuur. De voorzitter leidt alle vergaderingen. Bij afwezigheid wordt hij ver-
vangen door de secretaris en indien ook deze afwezig is door het in jaren oudste
aanwezig lid van het bestuur. De secretaris is belast met het houden der notulen
van alle huishoudelijke vergaderingen en met het voeren der correspondentie.

Artikel 15.
Het bestuur vergadert zo vaak als de voorzitter dit nodig acht of dit door drie
zijner leden wordt gewenst.

Artikel 16.
Minstens eenmaal per jaar wordt door het bestuur een algemene vergadering
bijeengeroepen; één van deze vergaderingen wordt expliciet aangeduid met de
naam van jaarvergadering; deze vindt plaats op een door het bestuur te bepalen

70

dag en plaats.

Artikel 17.
De jaarvergadering zal steeds gekoppeld zijn aan een wetenschappelijk sym-
posium. De op het algemene gedeelte vaan de jaarvergadering te behandelen
onderwerpen zijn
a. Verslag door de secretaris;
b. Rekening en verantwoording van de penningmeester;
c. Verslagen van de redacties der door de vereniging uitgegeven tijdschriften;
d. Eventuele verkiezing van bestuursleden;
e. Wat verder ter tafel komt. Het bestuur is verplicht een bepaald punt op de
agenda van een algemene vergadering te plaatsen indien uiterlijk vier weken van
te voren tenminste vijftien gewone leden schriftelijk de wens daartoe aan het
bestuur te kennen geven.

Artikel 18.
Deze statuten kunnen slechts worden gewijzigd, nadat op een algemene ver-
gadering een commissie voor statutenwijziging is benoemd. Deze commissie doet
binnen zes maanden haar voorstellen via het bestuur aan de leden toekomen.
Gedurende drie maanden daarna kunnen amendementen schriftelijk worden
ingediend bij het bestuur, dat deze ter kennis van de gewone leden brengt,
waarna een algemene vergadering de voorstellen en de ingediende amendementen
behandelt. Ter vergadering kunnen nieuwe amendementen in behandeling wor-
den genomen, die betrekking hebben op de voorstellen van de commissie of
de schriftelijk ingediende amendementen. Eerst wordt over elk der amende-
menten afzonderlijk gestemd; een amendement kan worden aangenomen met
gewone meerderheid van stemmen. Het al dan niet geamendeerde voorstel wordt
daarna in zijn geheel in stemming gebracht, tenzij de vergadering met gewone
meerderheid van stemmen besluit tot afzonderlijke stemming over bepaalde ar-
tikelen, waarna de resterende artikelen in hun geheel in stemming gebracht
worden. In beide gevallen kunnen de voorgestelde wijzigingen slechts worden
aangenomen met een meerderheid van tweederde van het aantal uitgebrachte
stemmen. Aangenomen statutenwijzigingen treden onmiddellijk in werking.

Artikel 19.
Op een vergadering worden besluiten genomen bij gewone meerderheid van stem-
men, tenzij deze statuten anders bepalen. Elk aanwezig gewoon lid heeft daarbij
het recht een stem uit te brengen. Stemming over zaken geschiedt mondeling of
schriftelijk, die over personen met gesloten briefjes. Uitsluitend bij schriftelijke
stemmingen worden blanco stemmen gerekend geldig te zijn uitgebracht.

Artikel 20.
a. De jaarvergadering geeft bij huishoudelijk reglement nadere regels omtrent
alle onderwerpen, waarvan de regeling door de statuten wordt vereist, of de
jaarvergadering gewenst voorkomt.
b. Het huishoudelijk reglement zal geen bepalingen mogen bevatten die afwijken
van of die in strijd zijn met de bepalingen van de wet of van de statuten, tenzij
de afwijking door de wet of de statuten wordt toegestaan.

Artikel 21.
In gevallen waarin deze statuten niet voorzien, beslist het bestuur.

71

72

