
Tasks for Actors

Frank S. de Boer



Main Problem

Modeling and analysis of real-time distributed software
systems



Main Approach

Executable modeling language for concurrent objects



Main Research Context

EU STREP Project Credo (FP6) on

Modeling and analysis of evolutionary structures in
distributed services

Coordinator: F.S. de Boer (CWI)
Start date: 1-9-2006
End date: 1-9-2009
Main partners (involved in this work)

I Einar Broch Johnsen (UIO)

I Wang Yi (UU)

I Mahdi Jaghouri (CWI)



Concurrent Objects

Model:

I Objects represent dedicated processors (in distributed systems)

I Objects interact via asynchronous message passing

I Objects create processes for handling each incoming message

I Objects synchronize their processes

Analysis:

I Formal semantics
I Maude implementation

I Simulation
I Testing
I Model-Checking

Main challenge:

Behavioral interfaces for modeling and analysis of
real-time scheduling policies for concurrent objects



Actors

No

I inter-object (return)

I intra-object (suspended processes)

synchronization



Technical Overview

I Timed Automata

I Task Automata

I Actors

I Tasks for Actors

I Conclusion



Timed Automata

Clocks Real-valued

States Delay:

I Invariant

Transitions Instantaneous actions:

I Enabling condition
I Reset



Semantics Timed Automata

Configuration 〈s, c〉
I s: a state of the automaton

I c : clock assignment

Transitions:

Delay 〈s, c〉 →δ 〈s, c + δ〉
provided c + δ |= I

Instantaneous Action 〈s, c〉 →a 〈s ′, c[X := 0]〉
provided c |= e

Timed Traces (δ1, a1), . . . , (δn, an), . . .



Analysis

Model-checking: Reduction to finite state-space



Task Automata

Extension of timed automata with dynamic task generation.

I Tasks are associated with states and specified by
I worst and best execution times
I deadlines

I Tasks are scheduled by queuing
(e.g., shortest deadline first)



Operational semantics

Configuration 〈s, c , q〉
I s: a state of the automaton

I c : clock assignment
I q: task queue (T ,w , b, d)

I w : worst case execution time
I b: best case execution time
I d : deadline



Task Generation

Given a transition s
a→ s ′ with L(s ′) = T (w , b, d)

we have

〈s, c , (T1,w1, b1, d1), . . . , (Tn,wn, bn, dn)〉
a→

〈s ′, c ′, (T1,w1, b1, d1), . . . , (T ,w , b, d), . . . , (Tn,wn, bn, dn)〉



Delay

〈s, c , (T1,w1, b1, d1), . . . , (Tn,wn, bn, dn)〉
δ→

〈s, c ′, (T1,w
′
1, b

′
1, d

′
1), . . . , (Tn,wn, bn, d

′
n)〉

where

I w ′
1 = w1 − δ

I b′
1 = b1 − δ

I d ′
i = di − δ

I c ′ = c + δ

Termination condition: b1 ≤ 0.



Schedulability Analysis

Schedulability analysis = Reachability analysis



Results

Note: Upperbound of the queue = Σidi/wi

I Non-preemptive scheduling is decidable

I Scheduling is decidable for fixed execution times

I Schedulability in general is undecidable



Actors

Semantics of message handlers m = S :

Internal Action 〈S , q〉 τ→ 〈S ′, q〉
Output 〈m;S , q〉 m→ 〈S , q〉

Input Enabledness 〈S , q〉 m→ 〈S , q ·m〉
Message Handling 〈nil ,m · q〉 τ→ 〈Sm, q〉

Interleaving A
τ→ A′

. . . , A, . . . → . . . , A′, . . .

Communication A
m→ A′, B

m→ B ′

. . . , A,B, . . . → . . . , A′,B ′ . . .



Extending Actors with Task Scheduling

I Timed automata specifications Tm of message handlers
(output actions: m(d))

I Scheduling (e.g., shortest deadline first)



Schedulability Analysis

Analysis of a single actor wrt a timed automaton
specification D (driver) of the environment
(input actions: m(d))



Operational Model

States 〈s, s ′, c , (T1, c1, d1), . . . , (Tn, cn, dn)〉
I s in Driver
I s ′ in T1

I c : clock assignment
I ci ≤ di

Transitions

I Interleaving of instantaneous (input and output)
actions

I Synchronization on delay



Summary

Construction of the Task Automaton:

Tm1 , . . . ,Tmn ,D ⇒ TA

where

I Tmi : TA of method mi of actor A

I D: Driver



Modular Analysis: Design by Contract

Possible use Driver D

Actual use Use case U

Compatibility by refinement (trace inclusion):

U v D

Verification by deadlock analysis of

synchronous product : U ‖ D

(assuming D is deterministic)



Conformence Testing

Conformence by refinement (trace inclusion):

S v ΠADA

Falsification:
Traces(S) \ Traces(ΠADA) 6= ∅

Test case
(t1,R1), . . . , (tn,Rn)

I ti : Transition in ΠADA

I Ri : Alternative transitions (in ΠADA)

A deadlock in the synchronous product T ‖ S generates
a counter-example



What Next?

I Application to the ASK system (Almende)

I Actors2Objects (synchronization)

I Real-time extension of concurrent objects

I Software Families: EU FET IP HATS project on

Highly Adaptable and Trustworthy Software Using
Formal Models

I Distributed Implementation: Objective C



References

I Credo: http://credo.cwi.nl.

I E. B. Johnsen and O. Owe.
An Asynchronous Communication Model for Distributed
Concurrent Objects.
Software and Systems Modeling.

I E. Fersman, P. Krcal, P. Pettersson, and W. Yi.
Task automata: Schedulability, decidability and undecidability.
Information and Computation.

I M. M. Jaghoori, F. S. de Boer, T. Chothia, and M. Sirjani.
Schedulability of asynchronous real-time concurrent objects.
Journal of Logic and Algebraic Programming.

I F.S. de Boer, T. Chothia and M. M. Jaghoori.
Modular Schedulability Analysis of Concurrent Objects in
Creol.
FSEN 2009, LNCS.


