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Main Problem

Modeling and analysis of real-time distributed software
systems



Main Approach

Executable modeling language for concurrent objects
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Concurrent Objects

Model:

I Objects represent dedicated processors (in distributed systems)

I Objects interact via asynchronous message passing

I Objects create processes for handling each incoming message

I Objects synchronize their processes

Analysis:

I Formal semantics
I Maude implementation

I Simulation
I Testing
I Model-Checking

Main challenge:

Behavioral interfaces for modeling and analysis of
real-time scheduling policies for concurrent objects



Actors

No

I inter-object (return)

I intra-object (suspended processes)

synchronization



Technical Overview

I Timed Automata

I Task Automata

I Actors

I Tasks for Actors

I Conclusion



Timed Automata

Clocks Real-valued

States Delay:

I Invariant

Transitions Instantaneous actions:

I Enabling condition
I Reset



Semantics Timed Automata

Configuration 〈s, c〉
I s: a state of the automaton

I c : clock assignment

Transitions:

Delay 〈s, c〉 →δ 〈s, c + δ〉
provided c + δ |= I

Instantaneous Action 〈s, c〉 →a 〈s ′, c[X := 0]〉
provided c |= e

Timed Traces (δ1, a1), . . . , (δn, an), . . .



Analysis

Model-checking: Reduction to finite state-space



Task Automata

Extension of timed automata with dynamic task generation.

I Tasks are associated with states and specified by
I worst and best execution times
I deadlines

I Tasks are scheduled by queuing
(e.g., shortest deadline first)



Operational semantics

Configuration 〈s, c , q〉
I s: a state of the automaton

I c : clock assignment
I q: task queue (T ,w , b, d)

I w : worst case execution time
I b: best case execution time
I d : deadline



Task Generation

Given a transition s
a→ s ′ with L(s ′) = T (w , b, d)

we have

〈s, c , (T1,w1, b1, d1), . . . , (Tn,wn, bn, dn)〉
a→

〈s ′, c ′, (T1,w1, b1, d1), . . . , (T ,w , b, d), . . . , (Tn,wn, bn, dn)〉



Delay

〈s, c , (T1,w1, b1, d1), . . . , (Tn,wn, bn, dn)〉
δ→

〈s, c ′, (T1,w
′
1, b

′
1, d

′
1), . . . , (Tn,wn, bn, d

′
n)〉

where

I w ′
1 = w1 − δ

I b′
1 = b1 − δ

I d ′
i = di − δ

I c ′ = c + δ

Termination condition: b1 ≤ 0.



Schedulability Analysis

Schedulability analysis = Reachability analysis



Results

Note: Upperbound of the queue = Σidi/wi

I Non-preemptive scheduling is decidable

I Scheduling is decidable for fixed execution times

I Schedulability in general is undecidable



Actors

Semantics of message handlers m = S :

Internal Action 〈S , q〉 τ→ 〈S ′, q〉
Output 〈m;S , q〉 m→ 〈S , q〉

Input Enabledness 〈S , q〉 m→ 〈S , q ·m〉
Message Handling 〈nil ,m · q〉 τ→ 〈Sm, q〉

Interleaving A
τ→ A′

. . . , A, . . . → . . . , A′, . . .

Communication A
m→ A′, B

m→ B ′

. . . , A,B, . . . → . . . , A′,B ′ . . .



Extending Actors with Task Scheduling

I Timed automata specifications Tm of message handlers
(output actions: m(d))

I Scheduling (e.g., shortest deadline first)



Schedulability Analysis

Analysis of a single actor wrt a timed automaton
specification D (driver) of the environment
(input actions: m(d))



Operational Model

States 〈s, s ′, c , (T1, c1, d1), . . . , (Tn, cn, dn)〉
I s in Driver
I s ′ in T1

I c : clock assignment
I ci ≤ di

Transitions

I Interleaving of instantaneous (input and output)
actions

I Synchronization on delay



Summary

Construction of the Task Automaton:

Tm1 , . . . ,Tmn ,D ⇒ TA

where

I Tmi : TA of method mi of actor A

I D: Driver



Modular Analysis: Design by Contract

Possible use Driver D

Actual use Use case U

Compatibility by refinement (trace inclusion):

U v D

Verification by deadlock analysis of

synchronous product : U ‖ D

(assuming D is deterministic)



Conformence Testing

Conformence by refinement (trace inclusion):

S v ΠADA

Falsification:
Traces(S) \ Traces(ΠADA) 6= ∅

Test case
(t1,R1), . . . , (tn,Rn)

I ti : Transition in ΠADA

I Ri : Alternative transitions (in ΠADA)

A deadlock in the synchronous product T ‖ S generates
a counter-example



What Next?

I Application to the ASK system (Almende)

I Actors2Objects (synchronization)

I Real-time extension of concurrent objects

I Software Families: EU FET IP HATS project on

Highly Adaptable and Trustworthy Software Using
Formal Models

I Distributed Implementation: Objective C
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