
1

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 1

Graph-Based State Spaces

Arend Rensink
University of Twente

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 2

Context: States as graphs
• Objects & method frames as nodes
• Relations & variables as (labelled) edges

BufferCell

Cell

Cell

Cell
next

next next

next
last

first

Object

Object
val

val

heap stack

no method frames in
this presentation

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 3

Graph formalism
• Graphs in this presentation:
– flat (i.e., not hierarchical), untyped
– directed, edge-labelled, no parallel edges
– self-edges depicted as node labels

• Formally: G = (L,N,E) with
– L set of labels
– N finite set of nodes
– E ⊆ N × L × N finite set of labelled edges

• Partial morphisms
– structure-preserving node mappings

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 4

Graphs as states

BufferCell

Cell

Cell

Cell
next

next next

next
first, last

Objectval

<put>
<get>

BufferCell

Cell

Cell

Cell
next

next next

next

last

first

Object

Object
val

val

Object
val

<put>

<get>

BufferCell

Cell

Cell

Cell
next

next next

next
last

first

Object

Object
val

val

Object
val

Object
val

<put>

<get>

<put>

<get>BufferCell

Cell

Cell

Cell
next

next next

next
first

last

BufferCell

Cell

Cell

Cell
next

next next

next
last

first

Object

Object
val

val

2

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 5

forbidden

Graph Productions
Production rule

source
graph

matching

Graph transition

src(t) tgt(t)
morph(t) target

graph
pushout

NACNACNACs

(SPO = Single Pushout Approach)

LHS RHS
rule morphism

(partial)

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 6

Example production rule
Alternative single-graph
representation: <put>

Buffer

Cell

Cell

Object

next

val

val

last

last Object

blue = eraser:
LHS, not RHS;

to be matched and deleted

green = creator:
RHS, not LHS;

to be added

black = reader:
LHS and RHS;

to be matched and preserved

public void put(Object val) {
if (last.next.val == null) {

last = last.next;
last.val = val;

}
} red = embargo:

NAC, not LHS;
forbidden

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 7

Example rule application

Buffer
Cell Cell

Cell

first | last

next

next

next

Objectval

Buffer

Cell Cell

Cell

last

first
next

next

next

Objectval

Object

val

Buffer

Cell

Cell

Object

next

val

val

last

last Object

matching

transition

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 8

Graphs as states

BufferCell

Cell

Cell

Cell
next

next next

next
first, last

Objectval

<put>
<get>

BufferCell

Cell

Cell

Cell
next

next next

next

last

first

Object

Object
val

val

Object
val

<put>

<get>

BufferCell

Cell

Cell

Cell
next

next next

next
last

first

Object

Object
val

val

Object
val

Object
val

<put>

<get>

transitions carry
partial morphisms

<put>

<get>BufferCell

Cell

Cell

Cell
next

next next

next
first

last

BufferCell

Cell

Cell

Cell
next

next next

next
last

first

Object

Object
val

val

not
inverse!

3

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 9

Aim: software model checking
• Construct graph procuction system from
– UML diagrams / other specifications
– Programs to be checked

• Generate state space
– States=graphs, transitions=transformations

• Formulate properties
– invariants/reachability (safety)
– liveness
– full temporal logic

• Check properties on the model
4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 10

Envisaged tool chain

= planned
= implemented

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 11

Example cases [GraBaTs 2004]

• List append: highly dynamic, hardly symmetric
• Philosophers: not at all dynamic, highly symmetric
• Ring mutex: somewhat dynamic, rather symmetric

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 12

Issues to be addressed
• Time consumption (complexity)

– graph matching
– isomorphism

• Space consumption (memory usage)
– state and transition storage
– symbolic techniques (BDDs) not applicable

• Problem size
– state size not a priori fixed (generally unbounded)
– state spaces generally infinite

• Propositional logic not suitable
• Model checking algorithms not suitable
• Verification not generic (problem size 4, 5, …)

Î

4

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 13

Time consumption (1)
• Graph matching
– Needed to find production rule matchings
– Complexity: NP-complete

• Alleviating circumstances:
– Graphs to be matched are LHSs

• typically small
– Host graphs are software models

• mostly deterministic
• transformations only at “locus of control”

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 14

Time consumption (2)
• Graph isomorphism
– Used to collapse states
– Complexity: between P and NP (!)

• Approximation techniques
– Over-approximation: graph certificates

• Excellent precision (> 99%)
• Still requires isomorphism check afterwards

– Under-approximation: equality
• Mediocre precision (10-50%)
• Very fast; useful as initial filter

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 15

Time consumption

• List append: Relatively large graphs
• Philosophers: Many symmetries
• Mutex: Many states & transitions

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 16

Issues to be addressed
• Time consumption (complexity)

– graph matching
– isomorphism

• Space consumption (memory usage)
– state and transition storage
– symbolic techniques (BDDs)?

• Problem size
– state size not a priori fixed (generally unbounded)
– state spaces generally infinite

• Propositional logic not suitable
• Model checking algorithms not suitable
• Verification not generic (problem size 4, 5, …)

Î

5

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 17

Space consumption
• Symbolic methods (BDDs) not suitable
– No fixed state vector
– Idea: Store “deltas” between graphs
– Average delta: 2-7 elements

• Transition storage also expensive
– Idea: Store “boundaries” of LHS matching
– Average boundary: 2-3 elements

• Current implementation:
– Overhead per state/transition > 75%
– Java quite memory generous

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 18

Issues to be addressed
• Time consumption (complexity)

– graph matching
– isomorphism

• Space consumption (memory usage)
– state and transition storage
– symbolic techniques (BDDs) not applicable

• Problem size
– state size not a priori fixed (generally unbounded)
– state spaces generally infinite

• Propositional logic not suitable
• Model checking algorithms not suitable
• Verification not generic (problem size 4, 5, …)

Î

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 19

State space reduction (1)
• Existing techniques:
– Symmetry recognition
– Partial order reduction
– Abstraction, e.g. slicing (property-driven)

• Symmetry recognition: here automatic
– Implied by isomorphism check
– Dining philosophers: linear reduction
– Expectation: little symmetry in real life

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 20

State space reduction (2)
• Partial order reduction
– Linearization of confluent rule applications
– Theory:

• Exponential “best case” improvement
• Restricted applicability, especially with NACs

– Practice: ???
• Abstraction
– Approximative results (false negatives)
– Very promising, not just for this purpose

6

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 21

Experimentation (1)
Dining philosophers
– get hungry
– get left fork, get right fork (in sequence)
– drop both forks (atomically) and think

19924,8271,63432,90310
267.0

2.9
0.1

space (MB)

3,7123,440,980347,33712

1921,5363,2618
14811175

time (s)#trans#states#phils

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 22

3,712267.03,440,980347,33712

192.921,5363,2618

199

exec(s) prep(s)

24.8271,63432,90310

space(MB)#trans#states#phils

3,712267.03,440,980347,33712
10545419.841,267,3004,165,710

91290.02,711,200328,503

718.8171,05825,961
192.921,5363,2618

199

exec(s) prep(s)

24.8271,63432,90310

space(MB)#trans#states#phils

Comparison [ICGT 2004]
• CheckVML (Varró)
– Encode graphs in SPIN
– Choose fixed node identities
– Predict rule applications

reduction =
degree of symmetry

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 23

Issues to be addressed
• Time consumption (complexity)

– graph matching
– isomorphism

• Space consumption (memory usage)
– state and transition storage
– symbolic techniques (BDDs) not applicable

• Problem size
– state size not a priori fixed (generally unbounded)
– state spaces generally infinite

• Propositional logic not suitable
• Model checking algorithms not suitable
• Verification not generic (problem size 4, 5, …)

Î

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 24

Property specification
• State-based properties
– Invariants, liveness properties
– Expressible by graph predicates
– Mechanism: graph embedding (+ NACs)

• Temporal logic properties
– Existing MC logics are propositional (L/CTL)
– Graph properties are FOL formulae
– Dynamic allocation/deallocation

7

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 25

Graph Temporal Logic
• Navigation using regular expressions

path ::= a | path.path | path+path | path* .
• Second-order expressions for node sets

set ::= Z | x | set.path | All .
• Linear temporal logic with predicates

form ::= x ∈ set | ¬ form | form ∧ form
| ∀x: form | let Z=set in form
| X form | form U form .

abbreviation:
set for ∃ x: x ∈ set

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 26

Example properties
• The buffer is circular

∀n∈Cell: n ∈ n.next+

• Cell values are unchanged until consumed
G(∀n∈Cell: ∀x∈n.val: x∈n.val U ¬x)

• Values are consumed in-order
G(∀n∈Cell: n.next.val ⇒

(n.next.val U ! n.val))
• New values are created all the time

G(let Z=val in F(∃x∈val: x∉Z))

second-order
property

node identity
traced through run

connectivity already
second-order

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 27

Issues to be addressed
• Time consumption (complexity)

– graph matching
– isomorphism

• Space consumption (memory usage)
– state and transition storage
– symbolic techniques (BDDs) not applicable

• Problem size
– state size not a priori fixed (generally unbounded)
– state spaces generally infinite

• Propositional logic not suitable
• Model checking algorithms not suitable
• Verification not generic (problem size 4, 5, …)

Î

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 28

Model checking algorithms
• More expressiveness means

less decidability/higher complexity
• Initial ideas: [FSTTCS 2004]
– With Distefano & Katoen
– No edges (multisets of entities)
– Single outgoing edge

8

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 29

Issues to be addressed
• Time consumption (complexity)

– graph matching
– isomorphism

• Space consumption (memory usage)
– state and transition storage
– symbolic techniques (BDDs) not applicable

• Problem size
– state size not a priori fixed (generally unbounded)
– state spaces generally infinite

• Propositional logic not suitable
• Model checking algorithms not suitable
• Verification not generic (problem size 4, 5, …)

Î

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 30

Abstract interpretation
• Method consists of:
– Concrete TS: (Sc,→,ic)
– Abstract TS: (Sa,→,ia)
– Abstraction function α: Sc → Sa with α(ic)=ia that is

• Sound: sc → sc’ implies α(sc) → α(sc’)
• Weakly complete: sa → sa’ implies sc → sc’

for some sc ∈ α-1(sa), sc’ ∈ α-1(sa’)
(α is a surjective simulation/homomorphism)

• Property reflecting:
– α(sc) ⌦a φ implies sc ⌦c φ for φ in an appropriate

logic
– not vice versa: verification is approximative

infinite state

computable, finite state

false negatives

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 31

Abstraction research programme
• Define graph abstraction
– Automatically computable
– Property reflecting

• Lift graph transformations
– Define effect directly on abstract graphs

• Develop general theory
– Basic principles to apply to any GT approach
– Wanted: Algebraic justification

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 32

Graph abstraction [ESOP 2004]

List CellCellCell Cell
nxt nxtfst

ObjectObject

val val

Object

valval

Cell
nxt

Cell
nxt

Object Object

first

shared

no nxt

unused
unshared

nxt

shared

no nxt

9

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 33

Enriching abstract graphs
• The following information is added:
– The (potential) number of node instances
– The (potential) degree of sharing (in+out)

• Both can be expressed as multiplicities
• Strongly inspired by shape graphs
– Sagiv, Reps, Wilhelm, Benedikt

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 34

Pictorial representation
• Write edge multiplicities at “ports”

nxtnxt
fst

val
val

nxt

Object

List CellCellCell

Object

1

>1

>1

>1

1

1

1

111 1 1 11 1 1

1

• Node multiplicities
• Outgoing edges
• Incoming edges

Object
>1

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 35

Abstract graph transformation
• Materialization
– Matching of left hand side made concrete
– Result: partially concrete graph

• Transformation
– Partially concrete graph treated as fully

concrete
• Normalization
– Transformation result is partially concrete
– Re-apply abstraction principle

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 36

Abstract circular buffer transition system

10

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 37

What you should take home
• Graphs as states: promising model
• Some inherent benefits
– Captures dynamic behaviour
– Implicit symmetries
– Allows structural abstraction

• Some inherent disadvantages
– Infinite state space
– Increased complexity in several issues

• A lot of open issues

