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Context: States as graphs
• Objects & method frames as nodes
• Relations & variables as (labelled) edges
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Graph formalism
• Graphs in this presentation:
– flat (i.e., not hierarchical), untyped
– directed, edge-labelled, no parallel edges
– self-edges depicted as node labels

• Formally: G = (L,N,E) with
– L set of labels
– N finite set of nodes
– E ⊆ N × L × N finite set of labelled edges

• Partial morphisms
– structure-preserving node mappings
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Graphs as states
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forbidden

Graph Productions
Production rule
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Example production rule
Alternative single-graph 
representation: <put>
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public void put(Object val) {
if (last.next.val == null) {

last = last.next;
last.val = val;

}
} red = embargo:

NAC, not LHS;
forbidden
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Example rule application
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Graphs as states
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Aim: software model checking
• Construct graph procuction system from
– UML diagrams / other specifications
– Programs to be checked 

• Generate state space 
– States=graphs, transitions=transformations

• Formulate properties 
– invariants/reachability (safety)
– liveness
– full temporal logic

• Check properties on the model
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Envisaged tool chain

= planned
= implemented
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Example cases [GraBaTs 2004]

• List append: highly dynamic, hardly symmetric
• Philosophers: not at all dynamic, highly symmetric
• Ring mutex: somewhat dynamic, rather symmetric
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Issues to be addressed
• Time consumption (complexity)

– graph matching
– isomorphism

• Space consumption (memory usage)
– state and transition storage
– symbolic techniques (BDDs) not applicable

• Problem size
– state size not a priori fixed (generally unbounded)
– state spaces generally infinite

• Propositional logic not suitable
• Model checking algorithms not suitable
• Verification not generic (problem size 4, 5, …)

Î
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Time consumption (1)
• Graph matching 
– Needed to find production rule matchings
– Complexity: NP-complete

• Alleviating circumstances: 
– Graphs to be matched are LHSs

• typically small
– Host graphs are software models

• mostly deterministic
• transformations only at “locus of control”
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Time consumption (2)
• Graph isomorphism
– Used to collapse states 
– Complexity: between P and NP (!)

• Approximation techniques
– Over-approximation: graph certificates

• Excellent precision (> 99%)
• Still requires isomorphism check afterwards  

– Under-approximation: equality
• Mediocre precision (10-50%)
• Very fast; useful as initial filter
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Time consumption

• List append: Relatively large graphs
• Philosophers: Many symmetries 
• Mutex: Many states & transitions

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 16

Issues to be addressed
• Time consumption (complexity)

– graph matching
– isomorphism

• Space consumption (memory usage)
– state and transition storage
– symbolic techniques (BDDs)?

• Problem size
– state size not a priori fixed (generally unbounded)
– state spaces generally infinite

• Propositional logic not suitable
• Model checking algorithms not suitable
• Verification not generic (problem size 4, 5, …)

Î
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Space consumption
• Symbolic methods (BDDs) not suitable
– No fixed state vector
– Idea: Store “deltas” between graphs
– Average delta: 2-7 elements

• Transition storage also expensive
– Idea: Store “boundaries” of LHS matching
– Average boundary: 2-3 elements

• Current implementation:
– Overhead per state/transition > 75%
– Java quite memory generous
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Issues to be addressed
• Time consumption (complexity)

– graph matching
– isomorphism

• Space consumption (memory usage)
– state and transition storage
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– state spaces generally infinite
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• Model checking algorithms not suitable
• Verification not generic (problem size 4, 5, …)

Î
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State space reduction (1)
• Existing techniques:
– Symmetry recognition
– Partial order reduction
– Abstraction, e.g. slicing (property-driven)

• Symmetry recognition: here automatic
– Implied by isomorphism check
– Dining philosophers: linear reduction
– Expectation: little symmetry in real life
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State space reduction (2)
• Partial order reduction
– Linearization of confluent rule applications
– Theory: 

• Exponential “best case” improvement
• Restricted applicability, especially with NACs

– Practice: ???
• Abstraction
– Approximative results (false negatives)
– Very promising, not just for this purpose
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Experimentation (1)
Dining philosophers
– get hungry
– get left fork, get right fork (in sequence)
– drop both forks (atomically) and think
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Comparison [ICGT 2004]
• CheckVML (Varró)
– Encode graphs in SPIN
– Choose fixed node identities
– Predict rule applications

reduction = 
degree of symmetry

4 March 2005, NVTI day, Utrecht Graph-Based State Spaces 23

Issues to be addressed
• Time consumption (complexity)

– graph matching
– isomorphism

• Space consumption (memory usage)
– state and transition storage
– symbolic techniques (BDDs) not applicable

• Problem size
– state size not a priori fixed (generally unbounded)
– state spaces generally infinite

• Propositional logic not suitable
• Model checking algorithms not suitable
• Verification not generic (problem size 4, 5, …)

Î
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Property specification
• State-based properties
– Invariants, liveness properties
– Expressible by graph predicates
– Mechanism: graph embedding (+ NACs)

• Temporal logic properties
– Existing MC logics are propositional (L/CTL)
– Graph properties are FOL formulae
– Dynamic allocation/deallocation
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Graph Temporal Logic
• Navigation using regular expressions

path ::= a | path.path | path+path | path* .
• Second-order expressions for node sets

set ::= Z | x | set.path | All .
• Linear temporal logic with predicates

form ::= x ∈ set | ¬ form | form ∧ form
| ∀x: form | let Z=set in form
| X form | form U form .

abbreviation:
set for ∃ x: x ∈ set
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Example properties
• The buffer is circular

∀n∈Cell: n ∈ n.next+

• Cell values are unchanged until consumed
G(∀n∈Cell: ∀x∈n.val: x∈n.val U ¬x) 

• Values are consumed in-order
G(∀n∈Cell: n.next.val ⇒

(n.next.val U ! n.val)) 
• New values are created all the time

G(let Z=val in F(∃x∈val: x∉Z)) 

second-order 
property

node identity 
traced through run

connectivity already 
second-order
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Issues to be addressed
• Time consumption (complexity)

– graph matching
– isomorphism

• Space consumption (memory usage)
– state and transition storage
– symbolic techniques (BDDs) not applicable

• Problem size
– state size not a priori fixed (generally unbounded)
– state spaces generally infinite

• Propositional logic not suitable
• Model checking algorithms not suitable
• Verification not generic (problem size 4, 5, …)

Î
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Model checking algorithms
• More expressiveness means 

less decidability/higher complexity
• Initial ideas: [FSTTCS 2004]
– With Distefano & Katoen
– No edges (multisets of entities)
– Single outgoing edge
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Abstract interpretation
• Method consists of:
– Concrete TS: (Sc,→,ic)
– Abstract TS: (Sa,→,ia) 
– Abstraction function α: Sc → Sa with α(ic)=ia that is

• Sound: sc → sc’ implies α(sc) → α(sc’)
• Weakly complete: sa → sa’ implies sc → sc’

for some sc ∈ α-1(sa), sc’ ∈ α-1(sa’)
(α is a surjective simulation/homomorphism)

• Property reflecting:
– α(sc) ⌦a φ implies sc ⌦c φ for φ in an appropriate 

logic
– not vice versa: verification is approximative 

infinite state

computable, finite state

false negatives
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Abstraction research programme
• Define graph abstraction
– Automatically computable
– Property reflecting

• Lift graph transformations
– Define effect directly on abstract graphs

• Develop general theory
– Basic principles to apply to any GT approach
– Wanted: Algebraic justification
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Graph abstraction [ESOP 2004]
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Enriching abstract graphs
• The following information is added:
– The (potential) number of node instances
– The (potential) degree of sharing (in+out)

• Both can be expressed as multiplicities
• Strongly inspired by shape graphs
– Sagiv, Reps, Wilhelm, Benedikt 
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Pictorial representation
• Write edge multiplicities at “ports”
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Abstract graph transformation
• Materialization
– Matching of left hand side made concrete
– Result: partially concrete graph

• Transformation
– Partially concrete graph treated as fully 

concrete
• Normalization
– Transformation result is partially concrete
– Re-apply abstraction principle
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Abstract circular buffer transition system
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What you should take home
• Graphs as states: promising model
• Some inherent benefits
– Captures dynamic behaviour
– Implicit symmetries
– Allows structural abstraction

• Some inherent disadvantages
– Infinite state space
– Increased complexity in several issues

• A lot of open issues


