Information security, cryptology, and factoring

Arjen K. Lenstra Lucent Technologies' Bell Laboratories Technische Universiteit Eindhoven

Outline

- Information security and cryptology
- Examples of progress in cryptology and their impact
- Integer factorization

Disclaimer & warning:

- opinions not necessarily shared by any of my employers
- 'Theoretische Informatica' mostly avoided

Industry view on information security

Goal is achieving 'CIA'

- Confidentiality
- Integrity
- Availability
- not because of idealism or because industry cares about your privacy, but forced by regulations
- cheapest solution industry can get away with is the best

Cryptology

Cryptology consists of:

• Cryptography:

design and application of data protection methods • Cryptanalysis:

evaluation of security of cryptographic methods

 \Rightarrow Cryptology looks crucial to achieve and maintain CIA

 ⇒ Cryptologists like to argue the practical importance of their field for Information Security
 Rightly so: cryptology was indeed crucial to achieve

the current state of affairs But: to what extent do cryptologic 'events' affect real life?

(as opposed to hackers, viruses, stupidities (OSs), ... Do we, from a business point of view, need more crypto?

Cryptology in the real world

In practice: comfortable cryptocentric picture somewhat obscured by a variety of unpleasant real life issues

Just a few, in random order:

users, employees, passwords, policies & their enforcement, monitoring, auditing, access control, profit/losses, legislation, verification, liabilities, risk management implementation, legacy systems, incompetence, confusion, laws, juries, lethargy, stupidity, software, errors, hackers, operating systems, inertia, viruses, networks, public relations, public perception, conventions, standards, physical protection, .

Often argued: security is like a chain, as strong as the weakest link

It may also be argued that this chain is hidden in a mud pie, hard to find the links, to figure out if they hang together, if anyone notices or cares if it's removed altogether: ...the mud pie will still be there...

Do we need new cryptology?

Industry point of view

Academic point of view New cryptography?

Thanks, but no thanks, we're fine ... mostly Of course needed: we keep churning out papers

New cryptanalysis?

We don't really care, we keep heaping mud Of course needed: so industry know what it gets and, never mind, sometimes we actually break something...

Bruce Schneier: Currently encryption is the strongest link we have. Everything else is worse: software, networks, people. There's absolutely no value in taking the strongest link and making it even stronger

Does cryptologic progress have any impact?

Examples:

- symmetric cryptanalysis:
 - the Data Encryption Standard (DES)
 - Secure Hash Algorithm (SHA1)
- asymmetric cryptanalysis:
 - breaking PKCS#1
 - progress in factoring
- cryptography:
 - the rise of provable security

The Data Encryption Standard

- Introduced in 1977, 56 bits of security (crack in time 256
- Regarded with utmost suspicion, by some
- Widely used \Rightarrow ok to use
- 1993: probably breakable in 4 hours for US\$ 1 million
- 1997: one encryption broken, in 4 months, for free
- 1998: US\$ 130,000 device: breaks encryption in 4 days
- 2000: Advanced Encryption Standard (AES) announced
- 2004: NIST says (single) DES inadequate (for feds)
- 2005: DES still widely used (just do risk analysis no incidents, yet), but new deployments (should) become rare
- \Rightarrow cryptanalysis hardly impacted course of events

Secure Hash Algorithm (SHA1)

- Finding $b \neq b'$ with SHA1(b) = SHA1(b') must be hard
- Introduced in 1994, as last minute replacement of SHA0
- Design based on 'public' developments, generally liked
- August 2004: many related hashes **badly** broken, but:
- until Feb 2005: SHA1 believed to offer 80-bit security, finding *b* and *b*' would take year on US\$ 20B device
- Feb 7, 2005, NIST: SHA1 not broken, ok until 2010
- Feb 14, 2005: SHA1 offers at most 66 bits of security, *b* and *b*' in at most about a year on US\$ 1M device
- Oops! But anyone really concerned? Any impact? possibly: see http://www.win.tue.nl/-bdeweger/CollidingCertificates/
- SHA0 offers at most 39 bits of security...

Breaking PKCS#1

- 1976-1998: (mostly) happy-go-lucky design of protocols 'if no one can break it, it's most likely secure'
- 1993: publication of RSA encryption standard PKCS#1 following the trusted HGL design strategy
- PKCS#1 actually deployed
- 1998: adaptive chosen ciphertext attack against PKCS #1
 'broken' from academic point of view:
 - protocol fooled into revealing secret information without cracking the underlying problem (RSA)
 in practice often hard to exploit
- 'may be the current design approach is not the right one'

Provable security

- took of in 1998 with Cramer/Shoup encryption scheme: reasonably practical and provably secure against attacks
- Smart marketing ploy: no relation to actual provable security
- Actual meaning is: 'provably reducible', getting secret information is provably as hard as solving the underlying hard problem
- Unwritten rule, strictly enforced in academia: all new protocols must be 'provably secure' (what about their implementation?)
- Slowly, new protocols make it to standards and products

 \Rightarrow impact on new standards & systems, barely on existing ones

Factoring

• Given a composite, how to find a non-trivial factor

- given 15, how to find 3 or 5
- how do you know that 15 is composite to begin with?

• what does this have to do with cryptography?

Factoring

- Given a composite, how to find a non-trivial factor
 - given 91
 - how do you know that 91 is composite?

because 'Primes are in P' (and so are composites), not only from a theoretical but also from an industrial point of view: Fermat's little theorem: if *n* is prime, then for all integers *a*: n divides $a^n - a$ (i.e., $a^n \equiv a$ modulo *n*)

⇒ If an integer *a* is found such that *n* does not divide $a^n - a$, then *n* is composite (without information about *n*'s factors) souped up version works 'always' – and, with CS101, efficiently too

• what does this have to do with cryptography?

Factoring and cryptography (RSA)

red is A's secret information, green is public

- User A selects primes p and q, computes n = pq, and integers e and d such that ed = 1 + k(p − 1)(q − 1), k ∈ Z
 A makes n and e public, keeps d secret
- (may throw p and q away)
- To encrypt message *m* intended for *A*:

```
E(m) = m^e \bmod n
```

• No one can make sense of E(m), except A:

 $E(m)^d = (m^e)^d \mod n = (m^{1+k(p-1)(q-1)} \mod n) = m$

because $m^{(p-1)} = 1 \mod p$, $m^{(q-1)} = 1 \mod q$, and n = pq

How to select the modulus in RSA?

- RSA can be broken if the modulus *n* can be factored (and who knows in how many other ways)
- RSA is efficient if the modulus *n* is small
- \Rightarrow Try to select the modulus as small as possible in such a way that the modulus cannot be factored
- \Rightarrow Need to know what size numbers cannot be factored, now, and in the foreseeable future

Same as familiar 'practical relevance' argument for xxx: mostly bogus, xxx addicts do it because they like it

A 'recent' history of integer factorization & results	
year 1969 1970 1976 1977	factorization eventmost wantedRSA lengthInvention of CFRAC: $F_7 = 2^{128} + 1$ (1 digit = 3.32 bits)Factorization of F_7 $F_8 = 2^{256} + 1$ $80-129$ digitsInvention of RSA1000000000000000000000000000000000000
1980 1981-3	Pollard- ρ : factorization of F ₈ $F_9 = 2^{512} + 1$ Development of quadratic sieve (QS)
1985	Invention of elliptic curve method (ECM), Factorization of F_{10} , F_{11} $\int 155 \text{ digits}$
1988	100-digit factorization by internet QS{155 digits 512-768 bits
1989 1990 1994 1999 2003	Pollard invents special number field sieve Factorization of F ₉ by SNFS ?? 768-1024 bits Factorization of 129-digit modulus by QS Factorization of 512-bit modulus by NFS 1024-bit RSA moduli are widely used, and still recommended

Pollard's mnemonic for F_9 factorization

In 1990 we found a 49-digit prime factor of F_9 : 7455602825647884208337395736200454918783366342657 which can easily be memorized as

MASSIVE TEAM BROKE NINTH FERMAT!

It factored as three primes, June fifteen (forenoon) nineteen nine oh. Actually one can explain the algorithm quite quickly and easily, er . . Well, space here precludes a detailed account - candidly, the big double search was done by Number Field Sieving (Periods (full stops) and exclamation marks denote single zeros. Two dots denote double zero. Other punctuation is ignored.)

Problem: since 1989 nothing seems to be happening!

More examples of things that did not happen:

- 1994, integers can quickly be factored on a quantum computer but no one knows how to build one
- 1999, TWINKLE opto-electronic device to factor 512-bit moduli estimates a bit too optimistic (device never actually built)
- 2001, Bernstein's factoring circuits:1536 bits for cost of 512 bits based on a neat accounting trick (sparked new research)
- 2003, TWIRL hardware siever: 1024 bits in a year for US\$1-10M somewhat challenging design (unlikely that it will be built)
- 2005, SHARK hardware siever: 1024 bits in a year for < US\$200M conservative design and estimates

Factoring algorithms

Special purpose methods

Take advantage of special properties of factor p to be found

Examples:

Trial division, Pollard- ρ (find small p) Pollard-p-1 (find p such that p-1 has small factors) Elliptic curve method (ECM) (find small p)

General purpose methods

Cannot take advantage of any properties of p

Examples: All based on same, apparently wrong, approach CFRAC, Dixon's algorithm Linear sieve, Quadratic sieve Number field sieve (NFS) ← Relevant for RSA

Intermezzo on runtimes

Trial division takes time $n^{1/2}$, Pollard- ρ time $n^{1/4}$ (worst case) Because $n^k = (e^{\ln n})^k$ this is called exponential-time (very bad) rewrite $(e^{\ln n})^k$ as: exp $(k(\ln n)^1(\ln \ln n)^0)$ Anything in between is called subexponential-time Halfway point: exp $(k(\ln n)^{1/2}(\ln \ln n)^{1/2})$ (not good: bad) is runtime of CFRAC, Dixon, linear&quadratic sieve, ECM and the best we could do until 1989 RSA's dream destroyed by Pollard's NFS: runtime exp $(k(\ln n)^{1/3}(\ln \ln n)^{2/3})$ still subexponential-time (bad, but not so bad) Factoring on quantum computer takes time $(\ln n)^k$ for constant k $(\ln n)^k$ is called polynomial-time (good, if k is decent) rewrite $(\ln n)^k$ as: exp $(k(\ln n)^0(\ln \ln n)^1)$

How to factor numbers?

- · We have no clue
- Try to write *n* as *x*² − *y*² = (*x* − *y*)(*x* + *y*) example: *n* = 91 = 100² − 3²
- More generally: try to find integers $x \neq y$ such that $x^2 \equiv y^2 \mod n$

If *n* divides $x^2 - y^2$, then *n* divides (x - y)(x + y), so

 $n = \gcd(x - y, n) \cdot \gcd(x + y, n)$

may be a non-trivial factorization (and computing gcd's is easy)

How to solve $x^2 \equiv y^2 \mod n$?

- 1. Collect integers *v* such that $v^2 \mod n$
- 'satisfies a milder condition than being a square' 'relation collection' or 'sieving' step
- 2. Look at the product of some of the v²'s such that
 'the product of the milder conditions is also a square'
 'matrix' step
- In theory two steps equally hard
- In practice:
 - Sieving step takes more time, but anyone can help, it's fault tolerant, just wait until it's done
 - Matrix step needs large computer, all bits critical

Example: n = 143

1. Define 'milder condition than being a square' as: 'factor into primes $\leq 5'$ ' Notice that $143 = 12^2 - 1^2 = (12 - 1)(12 + 1) = 11.13$

 \Rightarrow collect integers v such that $v^2 \mod 143$ has factors 2, 3, 5 only

Use Dixon's algorithm: pick v's at random and hope for the best

Pick v = 17: $17^2 = 289 = 3 + 2.143 \equiv 3 \mod 143 = 2^{\circ}.3^{\circ}.5^{\circ}$, good!

 $18^2 \equiv 3 + 17 + 18 \mod 143 = 38 = 2.19$, bad $19^2 \equiv 38 + 18 + 19 \mod 143 = 75 = 2^0.3^{1}.5^{2}$, good!

Example: *n* = 143

1. Define 'milder condition than being a square' as: 'factor into primes ≤ 5 '

 \Rightarrow collect integers v such that $v^2 \mod 143$ has factors 2, 3, 5 only

Use Dixon's algorithm: pick v's at random and hope for the best

Pick v = 17: $17^2 = 289 = 3 + 2 \cdot 143 \equiv 3 \mod 143 = 2^{0} \cdot 3^{1} \cdot 5^{0}$, good! $18^2 \equiv 3 + 17 + 18 \mod 143 = 38 = 2 \cdot 19$, bad $19^2 \equiv 38 + 18 + 19 \mod 143 = 75 = 2^{0} \cdot 3^{1} \cdot 5^{2}$, good! 2. Look at exponent vectors (0,1,0) and (0,1,2) of the good ones:

Their sum is (0,2,2), all even numbers \Rightarrow (17·19)² = 2⁰·3²·5² $\Rightarrow x = 17 \cdot 19 \mod 143 = 37, y = 2^{0} \cdot 3^{1} \cdot 5^{1} \mod 143 = 15$ $20^{2} \equiv 75 + 19 + 20 \mod 143 = 114 = 2^{1} \cdot 3^{1} \cdot 5^{0} \cdot 19$, bad? $143 = \gcd(37 - 15, 143) \cdot \gcd(\beta Batt A B a H 3) red phases are useful$

More in general

1. Define 'milder condition than being a square' as: 'factor into first $\pi(B)$ primes, i.e., the primes $\leq B$ '

 \Rightarrow collect *v* such that $v^2 \mod n$ is *B*-smooth'

As soon as set V of good v's satisfies $\#V > \pi(B)$: exponent vectors linearly dependent modulo 2

 \Rightarrow a right combination of the *v*'s exists

2. Find dependencies modulo 2 in $\#V \times \pi(B)$ matrix, each new dependency produces a new pair *x*, *y*

Refinements

- Generate v's such that v² mod n is 'smaller' (so v² mod n has a higher smoothness probability)
 - Upto and including QS: residues to be tested are $n^{O(1)}$ Number Field Sieve: residues to be tested are $n^{o(1)}$
- Generate *v*'s so they can be tested simultaneously (sieving)

or

· Test smoothness using fast non-sieving method

Making $v^2 \mod n$ smaller

Random *v*'s: $v^2 \mod n$ has same order magnitude as *n*,

- \Rightarrow How to generate the *v*'s such that $v^2 \mod n$ is smaller?
- Let a_i/b_i be *i*th continued fraction convergent to \sqrt{n} : $v = a_i, v^2 \mod n = a_i^2 - nb_i^2 \approx 2\sqrt{n}$: CFRAC
- Small $i,j: g(i,j) = (i+[\sqrt{n}])(j+[\sqrt{n}]): g(i,j)-n \approx (i+j)\sqrt{n}$ $p|g(i,j) \Leftrightarrow p|g(i+k_1p,j+k_2p)$ is sievable: linear sieve
- To make g(i,j) a square, take i = j: quadratic sieve
- $n = f_d m^d + f_{d-1} m^{d-1} + \dots + f_0 = f(m)$ for some $m \approx n^{1/(d+1)}$, $\mathbf{Q}(\alpha) = \mathbf{Q}[X]/(f(X)): \alpha - bm `=` \alpha - b\alpha$ modulo n
 - factor a bm in \mathbb{Z} : $\approx n^{1/(d+1)}$ (small a, b), sievable factor $a - b\alpha$ in $\mathbb{Z}[\alpha]$ 'as' $b^{d}f(a/b) \approx n^{1/(d+1)}$, sievable with $d^{3} \approx (\log n)/(\log \log n)$ all 'residues' $\approx n^{o(1)}$: NFS

NFS factorization of 512-bit *n*, 1999

- Two bounds B_1 and B_2 , each about 2^{24}
- Total number of 'primes' about 2 million
- Relation collection about 8 years on 1GHz laptop (or 10 minutes on US\$10K TWIRL device)
- Due to large primes: matrix about $6.7M \times 6.7M$ with on average about 63 non-zeros per row
- Matrix step in 10 days on Cray C916 (required 2Gigabyte RAM)

Current record 576 bits, soon 640 bits, mostly achieved by throwing more time at it

Factoring conclusion

- Practical factoring impact so far:
 - Bad PR: 512-bit product line discontinued in 1990
 - Despite attempts: no dent in 1024-bit RSA security
- General purpose factoring is stuck, since 1970, in the Morrison-Brillhart approach
- Severely running out of steam
- Needed: entirely new, fresh approach to factoring
- Practical question: does modulus length have to be divisible by 32?

