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Fourier analysis

Many applications in math, physics, engineering,

. . . and in computer science:

Signal processing

Data compression

Multiplying two polynomials

These examples use Fourier analysis over cyclic groups

We will focus on Fourier analysis over the Boolean cube
= {0, 1}n, set of all n-bit strings
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Consider the space of functions f : {0, 1}n → R, with

normalized inner product 〈f, g〉 =
1

2n

∑

x∈{0,1}n

f(x)g(x)

The parity-functions χs(x) = (−1)x·s =
∏

i:si=1(−1)xi

form an orthonormal basis of this space

Hence we can write f =
∑

s∈{0,1}n

f̂(s)χs

with f̂(s) = 〈f, χs〉 =
1

2n

∑

x∈{0,1}n

f(x)χs(x)

Map f 7→ f̂ is proportional to unitary (length-preserving)

⇒
1

2n

∑

x

f(x)2 =
∑

s

f̂(s)2 (Parseval’s identity)
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f =
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1
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1
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∑

x∈{0,1}n

f(x)χs(x)|2

So χs (or its negation) has non-trivial correlation with f
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(2) Learning from uniform examples

A Fourier coefficient is just a uniform expectation:

f̂(s) =
1

2n

∑

x∈{0,1}n

f(x)χs(x) = Expx[f(x)χs(x)]

We can approximate this given uniformly random
examples (x1, f(x1)), . . . , (xm, f(xm)):
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1

2n

∑

x∈{0,1}n

f(x)χs(x) = Expx[f(x)χs(x)]

We can approximate this given uniformly random
examples (x1, f(x1)), . . . , (xm, f(xm)):
1

m

m∑

i=1

f(xi)χs(x
i) → f̂(s)

Converges fast if |f̂(s)| is not too small (Chernoff)
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f(xi)χs(x
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Converges fast if |f̂(s)| is not too small (Chernoff)

Hence we can quickly learn (approximate) an unknown
function f that is dominated by a few large coefficients
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(2) Learning from uniform examples

A Fourier coefficient is just a uniform expectation:

f̂(s) =
1

2n

∑

x∈{0,1}n

f(x)χs(x) = Expx[f(x)χs(x)]

We can approximate this given uniformly random
examples (x1, f(x1)), . . . , (xm, f(xm)):
1

m

m∑

i=1

f(xi)χs(x
i) → f̂(s)

Converges fast if |f̂(s)| is not too small (Chernoff)

Hence we can quickly learn (approximate) an unknown
function f that is dominated by a few large coefficients
(example from LMN 89: AC0-circuits)

Fourier analysis of Boolean functions: Some beautiful examples – p.7/13
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Error-correcting code: E : {0, 1}n → {0, 1}m
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(3) List-decoding of Hadamard code

Error-correcting code: E : {0, 1}n → {0, 1}m

If all codewords have distance d(E(x), E(y)) ≥ 2e + 1,
then we can uniquely recover x from corrupted
codeword w ∈ {0, 1}m with e errors
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(3) List-decoding of Hadamard code

Error-correcting code: E : {0, 1}n → {0, 1}m

If all codewords have distance d(E(x), E(y)) ≥ 2e + 1,
then we can uniquely recover x from corrupted
codeword w ∈ {0, 1}m with e errors (d(w,E(x)) = e)

Hadamard code (m = 2n):
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Error-correcting code: E : {0, 1}n → {0, 1}m

If all codewords have distance d(E(x), E(y)) ≥ 2e + 1,
then we can uniquely recover x from corrupted
codeword w ∈ {0, 1}m with e errors (d(w,E(x)) = e)

Hadamard code (m = 2n): E(x)y = x · y mod 2
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(3) List-decoding of Hadamard code

Error-correcting code: E : {0, 1}n → {0, 1}m

If all codewords have distance d(E(x), E(y)) ≥ 2e + 1,
then we can uniquely recover x from corrupted
codeword w ∈ {0, 1}m with e errors (d(w,E(x)) = e)

Hadamard code (m = 2n): E(x)y = x · y mod 2

All codewords are at distance m/2
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(3) List-decoding of Hadamard code

Error-correcting code: E : {0, 1}n → {0, 1}m

If all codewords have distance d(E(x), E(y)) ≥ 2e + 1,
then we can uniquely recover x from corrupted
codeword w ∈ {0, 1}m with e errors (d(w,E(x)) = e)

Hadamard code (m = 2n): E(x)y = x · y mod 2

All codewords are at distance m/2 ⇒ given w with
e < m/4 errors, there is a unique x with d(w,E(x)) ≤ e
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(3) List-decoding of Hadamard code

Error-correcting code: E : {0, 1}n → {0, 1}m

If all codewords have distance d(E(x), E(y)) ≥ 2e + 1,
then we can uniquely recover x from corrupted
codeword w ∈ {0, 1}m with e errors (d(w,E(x)) = e)

Hadamard code (m = 2n): E(x)y = x · y mod 2

All codewords are at distance m/2 ⇒ given w with
e < m/4 errors, there is a unique x with d(w,E(x)) ≤ e

Problem: if e ≥ m/4 errors, then there may be many
different x with d(w,E(x)) ≤ e
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(3) List-decoding of Hadamard code

Error-correcting code: E : {0, 1}n → {0, 1}m

If all codewords have distance d(E(x), E(y)) ≥ 2e + 1,
then we can uniquely recover x from corrupted
codeword w ∈ {0, 1}m with e errors (d(w,E(x)) = e)

Hadamard code (m = 2n): E(x)y = x · y mod 2

All codewords are at distance m/2 ⇒ given w with
e < m/4 errors, there is a unique x with d(w,E(x)) ≤ e

Problem: if e ≥ m/4 errors, then there may be many
different x with d(w,E(x)) ≤ e

Example: w = 03m/41m/4 could’ve come from codewords
E(0n) = 0m or E(10n−1) = 0m/21m/2
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(3) List-decoding of Hadamard code

Error-correcting code: E : {0, 1}n → {0, 1}m

If all codewords have distance d(E(x), E(y)) ≥ 2e + 1,
then we can uniquely recover x from corrupted
codeword w ∈ {0, 1}m with e errors (d(w,E(x)) = e)

Hadamard code (m = 2n): E(x)y = x · y mod 2

All codewords are at distance m/2 ⇒ given w with
e < m/4 errors, there is a unique x with d(w,E(x)) ≤ e

Problem: if e ≥ m/4 errors, then there may be many
different x with d(w,E(x)) ≤ e

Example: w = 03m/41m/4 could’ve come from codewords
E(0n) = 0m or E(10n−1) = 0m/21m/2

List-decoding: output the whole list (hopefully small)
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List-decoding of Hadamard code (cntd)
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List-decoding of Hadamard code (cntd)

List-decoding: given corrupted codeword w ∈ {0, 1}m

and error bound e, output list {x : d(w,E(x)) ≤ e}
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List-decoding of Hadamard code (cntd)

List-decoding: given corrupted codeword w ∈ {0, 1}m

and error bound e, output list {x : d(w,E(x)) ≤ e}

For Hadamard code: if e ≤ (1/2 − ε)m,
then this list has only O(1/ε2) elements!
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List-decoding of Hadamard code (cntd)

List-decoding: given corrupted codeword w ∈ {0, 1}m

and error bound e, output list {x : d(w,E(x)) ≤ e}

For Hadamard code: if e ≤ (1/2 − ε)m,
then this list has only O(1/ε2) elements!

Why?
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List-decoding: given corrupted codeword w ∈ {0, 1}m

and error bound e, output list {x : d(w,E(x)) ≤ e}

For Hadamard code: if e ≤ (1/2 − ε)m,
then this list has only O(1/ε2) elements!

Why? Fourier analysis!
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List-decoding of Hadamard code (cntd)

List-decoding: given corrupted codeword w ∈ {0, 1}m

and error bound e, output list {x : d(w,E(x)) ≤ e}

For Hadamard code: if e ≤ (1/2 − ε)m,
then this list has only O(1/ε2) elements!

Why? Fourier analysis!
1. View w as function w : {0, 1}n → {±1}, and E(s) = χs
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List-decoding of Hadamard code (cntd)

List-decoding: given corrupted codeword w ∈ {0, 1}m

and error bound e, output list {x : d(w,E(x)) ≤ e}

For Hadamard code: if e ≤ (1/2 − ε)m,
then this list has only O(1/ε2) elements!

Why? Fourier analysis!
1. View w as function w : {0, 1}n → {±1}, and E(s) = χs

2. If d(w,E(s)) ≤ (1/2 − ε)m, then ŵ(s) ≥ 2ε
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List-decoding of Hadamard code (cntd)

List-decoding: given corrupted codeword w ∈ {0, 1}m

and error bound e, output list {x : d(w,E(x)) ≤ e}

For Hadamard code: if e ≤ (1/2 − ε)m,
then this list has only O(1/ε2) elements!

Why? Fourier analysis!
1. View w as function w : {0, 1}n → {±1}, and E(s) = χs

2. If d(w,E(s)) ≤ (1/2 − ε)m, then ŵ(s) ≥ 2ε

3.
∑

s ŵ(s)2 = 1 (by Parseval)
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List-decoding of Hadamard code (cntd)

List-decoding: given corrupted codeword w ∈ {0, 1}m

and error bound e, output list {x : d(w,E(x)) ≤ e}

For Hadamard code: if e ≤ (1/2 − ε)m,
then this list has only O(1/ε2) elements!

Why? Fourier analysis!
1. View w as function w : {0, 1}n → {±1}, and E(s) = χs

2. If d(w,E(s)) ≤ (1/2 − ε)m, then ŵ(s) ≥ 2ε

3.
∑

s ŵ(s)2 = 1 (by Parseval),
hence at most 1

4ε2 different s satisfy ŵ(s) ≥ 2ε
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List-decoding of Hadamard code (cntd)

List-decoding: given corrupted codeword w ∈ {0, 1}m

and error bound e, output list {x : d(w,E(x)) ≤ e}

For Hadamard code: if e ≤ (1/2 − ε)m,
then this list has only O(1/ε2) elements!

Why? Fourier analysis!
1. View w as function w : {0, 1}n → {±1}, and E(s) = χs

2. If d(w,E(s)) ≤ (1/2 − ε)m, then ŵ(s) ≥ 2ε

3.
∑

s ŵ(s)2 = 1 (by Parseval),
hence at most 1

4ε2 different s satisfy ŵ(s) ≥ 2ε

Goldreich and Levin show how to find this list efficiently
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List-decoding of Hadamard code (cntd)

List-decoding: given corrupted codeword w ∈ {0, 1}m

and error bound e, output list {x : d(w,E(x)) ≤ e}

For Hadamard code: if e ≤ (1/2 − ε)m,
then this list has only O(1/ε2) elements!

Why? Fourier analysis!
1. View w as function w : {0, 1}n → {±1}, and E(s) = χs

2. If d(w,E(s)) ≤ (1/2 − ε)m, then ŵ(s) ≥ 2ε

3.
∑

s ŵ(s)2 = 1 (by Parseval),
hence at most 1

4ε2 different s satisfy ŵ(s) ≥ 2ε

Goldreich and Levin show how to find this list efficiently

There are codes with much better rate that are still
efficiently list-decodable
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List-decoding of Hadamard code (cntd)

List-decoding: given corrupted codeword w ∈ {0, 1}m

and error bound e, output list {x : d(w,E(x)) ≤ e}

For Hadamard code: if e ≤ (1/2 − ε)m,
then this list has only O(1/ε2) elements!

Why? Fourier analysis!
1. View w as function w : {0, 1}n → {±1}, and E(s) = χs

2. If d(w,E(s)) ≤ (1/2 − ε)m, then ŵ(s) ≥ 2ε

3.
∑

s ŵ(s)2 = 1 (by Parseval),
hence at most 1

4ε2 different s satisfy ŵ(s) ≥ 2ε

Goldreich and Levin show how to find this list efficiently

There are codes with much better rate that are still
efficiently list-decodable (e.g. Reed-Solomon)
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(4) Influence of variables
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(4) Influence of variables

Consider a Boolean function f : {0, 1}n → {0, 1}

Fourier analysis of Boolean functions: Some beautiful examples – p.10/13



(4) Influence of variables

Consider a Boolean function f : {0, 1}n → {0, 1}

The influence of variable i is the probability that xi

determines the function value
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(4) Influence of variables

Consider a Boolean function f : {0, 1}n → {0, 1}

The influence of variable i is the probability that xi

determines the function value:

Inff (i) = Pr
x∈{0,1}n

[f(x) 6= f(x ⊕ ei)]
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(4) Influence of variables

Consider a Boolean function f : {0, 1}n → {0, 1}

The influence of variable i is the probability that xi

determines the function value:

Inff (i) = Pr
x∈{0,1}n

[f(x) 6= f(x ⊕ ei)]

For things like voting and distributed coin-flipping:
would like to find a balanced f where each Inff (i) ≈ 1/n
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(4) Influence of variables

Consider a Boolean function f : {0, 1}n → {0, 1}

The influence of variable i is the probability that xi

determines the function value:

Inff (i) = Pr
x∈{0,1}n

[f(x) 6= f(x ⊕ ei)]

For things like voting and distributed coin-flipping:
would like to find a balanced f where each Inff (i) ≈ 1/n

KKL 88: if f is balanced, then
there always is an i with Inff (i) ≥ log(n)/n
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(4) Influence of variables

Consider a Boolean function f : {0, 1}n → {0, 1}

The influence of variable i is the probability that xi

determines the function value:

Inff (i) = Pr
x∈{0,1}n

[f(x) 6= f(x ⊕ ei)]

For things like voting and distributed coin-flipping:
would like to find a balanced f where each Inff (i) ≈ 1/n

KKL 88: if f is balanced, then
there always is an i with Inff (i) ≥ log(n)/n

This implies there is a set of O(n/ log(n)) variables that
controls f with high probability
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The KKL proof
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei)
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Fourier analysis of Boolean functions: Some beautiful examples – p.11/13



The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Inff (i)
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Inff (i) = Pr[fi 6= 0]
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Inff (i) = Pr[fi 6= 0] = Exp[f2
i ]
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Inff (i) = Pr[fi 6= 0] = Exp[f2
i ] =

∑

s

f̂i(s)
2
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Inff (i) = Pr[fi 6= 0] = Exp[f2
i ] =

∑

s

f̂i(s)
2 = 4

∑

s:si=1

f̂(s)2
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Inff (i) = Pr[fi 6= 0] = Exp[f2
i ] =

∑

s

f̂i(s)
2 = 4

∑

s:si=1

f̂(s)2

If L =
∑

s:|s|>log n f̂(s)2 ≥ 1/3

Fourier analysis of Boolean functions: Some beautiful examples – p.11/13



The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Inff (i) = Pr[fi 6= 0] = Exp[f2
i ] =

∑

s

f̂i(s)
2 = 4

∑

s:si=1

f̂(s)2

If L =
∑

s:|s|>log n f̂(s)2 ≥ 1/3, then
∑n

i=1 Inff (i)
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Inff (i) = Pr[fi 6= 0] = Exp[f2
i ] =

∑

s

f̂i(s)
2 = 4

∑

s:si=1

f̂(s)2

If L =
∑

s:|s|>log n f̂(s)2 ≥ 1/3, then
∑n

i=1 Inff (i)

= 4
∑

s |s|f̂(s)2
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Inff (i) = Pr[fi 6= 0] = Exp[f2
i ] =

∑

s

f̂i(s)
2 = 4

∑

s:si=1

f̂(s)2

If L =
∑

s:|s|>log n f̂(s)2 ≥ 1/3, then
∑n

i=1 Inff (i)

= 4
∑

s |s|f̂(s)2 ≥ Ω(log n)
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Inff (i) = Pr[fi 6= 0] = Exp[f2
i ] =

∑

s

f̂i(s)
2 = 4

∑

s:si=1

f̂(s)2

If L =
∑

s:|s|>log n f̂(s)2 ≥ 1/3, then
∑n

i=1 Inff (i)

= 4
∑

s |s|f̂(s)2 ≥ Ω(log n) ⇒ maxi Inff (i) ≥ Ω(log(n)/n)
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Inff (i) = Pr[fi 6= 0] = Exp[f2
i ] =

∑

s

f̂i(s)
2 = 4

∑

s:si=1

f̂(s)2

If L =
∑

s:|s|>log n f̂(s)2 ≥ 1/3, then
∑n

i=1 Inff (i)

= 4
∑

s |s|f̂(s)2 ≥ Ω(log n) ⇒ maxi Inff (i) ≥ Ω(log(n)/n)

If L < 1/3, then use KKL inequality (special case of
Bonami-Beckner):
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Inff (i) = Pr[fi 6= 0] = Exp[f2
i ] =

∑

s

f̂i(s)
2 = 4

∑

s:si=1

f̂(s)2

If L =
∑

s:|s|>log n f̂(s)2 ≥ 1/3, then
∑n

i=1 Inff (i)

= 4
∑

s |s|f̂(s)2 ≥ Ω(log n) ⇒ maxi Inff (i) ≥ Ω(log(n)/n)

If L < 1/3, then use KKL inequality (special case of
Bonami-Beckner): ∀g : {0, 1}n → {−1, 0,+1}, δ ∈ [0, 1]

∑

s∈{0,1}n

δ|s|ĝ(s)2 ≤ Pr[g 6= 0]2/(1+δ)
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The KKL proof

Define fi(x) = f(x) − f(x ⊕ ei) ∈ {−1, 0,+1}

Then f̂i(s) = 2f̂(s) if si = 1 , and f̂i(s) = 0 if si = 0

Inff (i) = Pr[fi 6= 0] = Exp[f2
i ] =

∑

s

f̂i(s)
2 = 4

∑

s:si=1

f̂(s)2

If L =
∑

s:|s|>log n f̂(s)2 ≥ 1/3, then
∑n

i=1 Inff (i)

= 4
∑

s |s|f̂(s)2 ≥ Ω(log n) ⇒ maxi Inff (i) ≥ Ω(log(n)/n)

If L < 1/3, then use KKL inequality (special case of
Bonami-Beckner): ∀g : {0, 1}n → {−1, 0,+1}, δ ∈ [0, 1]

∑

s∈{0,1}n

δ|s|ĝ(s)2 ≤ Pr[g 6= 0]2/(1+δ)

A calculation shows maxi Inff (i) ≥ Ω(log(n)/n)
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Summary

Fourier analysis of Boolean functions is an increasingly
prominent tool in theoretical computer science

We showed a few simple but beautiful examples:

1. Approximating low-degree functions by parities

2. List-decoding of Hadamard codes

3. Learning under the uniform distribution

4. The influence of variables on Boolean functions
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Warning: these are powerful techniques!

Fourier analysis of Boolean functions: Some beautiful examples – p.13/13


	Fourier analysis
	This has been very useful in CS
	Fourier analysis over the Boolean cube
	Examples
	(1) Approximating
functions with parities
	(2) Learning
from uniform examples
	(3) List-decoding
of Hadamard code
	List-decoding of Hadamard code (cntd)
	(4) Influence
of variables
	The KKL proof
	Summary
	Warning: these are powerful techniques!

