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# Many applications in math, physics, engineering,
...and in computer science:
s Signal processing
s Data compression
» Multiplying two polynomials
#® These examples use Fourier analysis over cyclic groups

# We will focus on Fourier analysis over the Boolean cube
= {0, 1}", set of all n-bit strings
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# Learning a function from examples

#® The influence of variables on a function
r

Sensitivity of a function to noise on the inputs
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# Consider the space of functions f : {O 1}" — R, with

normalized inner product (f,g) = — »  f(x
xE{O 1}
® The parity-functions x,(z) = (=1)"* = [],... .1 (=1)*
form an orthonormal basis of this space

® Hence we can write f = Z f(s)xs

s€{0,1}n

with 7(s) = () = 50 > Fla)xs(o)

® Map f +— fis proportional to unitary (length-preserving)

N Qin %: fz)? = Z 7(s)? (Parseval's identity) N
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® f(x1,12) = OR(21,22) € {0,1}

® f(00) = 4er{01}n f(@)xoo(z) = 7(0+1+1+1) =3
f(01) = =%, F(10) = -1, F(11) = -]

» Note: f(00) = Exp,|f(z)]
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® f(00) = 4er{01}n f(z)xoo(z) = 3(0+14+1+1) =2
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® Note: f(00) = Exp,[f(x)], and f(00) = 3", f(s)
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® Parseval: %:f(a:)Q — 2 — Z;f(s)Q
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OR on 2 bits: T
® f(x1,22) =OR(z1,22) € {0,1}

® f(00) = 42@6{01}4() 0(z) =0+1+1+1)=3
f(01) = —%, f(10) =1, f11) =1
» Note: f(OO)—Epr[f( )] and £(00) = 3", f(s)

» Parseval: Z Flz =" f(s)?

PARITY on n bits, with TRUE= —1, FALSE= +1:
s f(z) = xin(x) = (~1), so f(1") = 1
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OR on 2 bits: T
® f(x1,22) =OR(z1,22) € {0,1}

® f(00) = 42@6{01}4() 0(z) =0+1+1+1)=3
f(01) = —%, f(10) =1, f11) =1
» Note: f(OO)—Epr[f( )] and £(00) = 3", f(s)

» Parseval: Z Flz =" f(s)?

PARITY on n bits, with TRUE= —1, FALSE= +1:
® f(x)=ir(z) = (-1, s0 f17) =1
L o all other f(s) are 0
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® Suppose f:{0,1}" — {£1} has small Fourier degree d:

J = Z J/E\(S)XS

s:|s|<d

# Then there exists a parity-function on at most d bits that
has non-trivial correlation with f

» Why? Z F(s)? = Qin Z f(z)* =1 (Parseval).

s:|s|<d xe{0,1}n

This is a sum over < n¢ terms. Hence 3s with

< fP =l Y @)

x€{0,1}™
L ® SO0 y, (orits negation) has non-trivial correlation with f J
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# We can approximate this given uniformly random
examples (z!, /(")) (™, f(a™))

—Zf s(z') — f(s)

» Converges fast if | f(s)| is not too small (Chernoff)

# Hence we can quickly learn (approximate) an unknown
function f that is dominated by a few large coefficients
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#® A Fourier coefficient Is just a uniform expectation:

# We can approximate this given uniformly random
examples (z!, /(")) (™, f(a™))

—Zf s(z') — f(s)

» Converges fast if | f(s)| is not too small (Chernoff)

# Hence we can quickly learn (approximate) an unknown
function f that is dominated by a few large coefficients
~ (example from LMN 89: ACy-circuits) o
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o |[f all codewords have distance d(E(x), E(y)) > 2e + 1,
then we can uniquely recover x from corrupted
codeword w € {0, 1} with e errors
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(3) List-decoding of Hadamard code
Error-correcting code: £ : {0,1}"* — {0,1}™ T

If all codewords have distance d(F(x), E(y)) > 2e + 1,
then we can uniquely recover x from corrupted
codeword w € {0, 1} with e errors (d(w, E(x)) =€)

Hadamard code (m = 2"):
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(3) List-decoding of Hadamard code
Error-correcting code: £ : {0,1}"* — {0,1}™ T

If all codewords have distance d(F(x), E(y)) > 2e + 1,
then we can uniquely recover x from corrupted
codeword w € {0, 1} with e errors (d(w, E(x)) =€)
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(3) List-decoding of Hadamard code
Error-correcting code: £ : {0,1}"* — {0,1}™ T

If all codewords have distance d(F(x), E(y)) > 2e + 1,
then we can uniquely recover x from corrupted
codeword w € {0, 1} with e errors (d(w, E(x)) =€)

Hadamard code (m =2"): E(z), =z -y mod 2
All codewords are at distance m/2
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(3) List-decoding of Hadamard code
Error-correcting code: £ : {0,1}"* — {0,1}™ T

If all codewords have distance d(F(x), E(y)) > 2e + 1,
then we can uniquely recover x from corrupted
codeword w € {0, 1} with e errors (d(w, E(x)) =€)

Hadamard code (m =2"): E(z), =z -y mod 2

All codewords are at distance m/2 =- given w with
e < m/4 errors, there is a unique z with d(w, E(x)) < e
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(3) List-decoding of Hadamard code
Error-correcting code: £ : {0,1}"* — {0,1}™ T

If all codewords have distance d(F(x), E(y)) > 2e + 1,
then we can uniquely recover x from corrupted
codeword w € {0, 1} with e errors (d(w, E(x)) =€)

Hadamard code (m =2"): E(z), =z -y mod 2

All codewords are at distance m/2 =- given w with
e < m/4 errors, there is a unique z with d(w, E(x)) < e

Problem: if e > m/4 errors, then there may be many
different z with d(w, F(x)) < e
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(3) List-decoding of Hadamard code
Error-correcting code: £ : {0,1}"* — {0,1}™ T

If all codewords have distance d(F(x), E(y)) > 2e + 1,
then we can uniquely recover x from corrupted
codeword w € {0, 1} with e errors (d(w, E(x)) =€)

Hadamard code (m =2"): E(z), =z -y mod 2

All codewords are at distance m/2 =- given w with
e < m/4 errors, there is a unique z with d(w, E(x)) < e

Problem: if e > m/4 errors, then there may be many
different z with d(w, F(x)) < e

Example: w = 0°™/41™/4 could’ve come from codewords
E(0™) = 0™ or E(10""1) = om/21m/2
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(3) List-decoding of Hadamard code
Error-correcting code: £ : {0,1}"* — {0,1}™ T

If all codewords have distance d(F(x), E(y)) > 2e + 1,
then we can uniquely recover x from corrupted
codeword w € {0, 1} with e errors (d(w, E(x)) =€)

Hadamard code (m =2"): E(z), =z -y mod 2

All codewords are at distance m/2 =- given w with
e < m/4 errors, there is a unique z with d(w, E(x)) < e

Problem: if e > m/4 errors, then there may be many
different z with d(w, F(x)) < e

Example: w = 0°™/41™/4 could’ve come from codewords
E(0") = 0™ or E(10"1) = gm/21m/2
List-decoding: output the whole list (hopefully small) J
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List-decoding of Hadamard code (cntd)
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# List-decoding: given corrupted codeword w € {0,1}™
and error bound e, output list {z : d(w, E(x)) < e}

o |
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List-decoding of Hadamard code (cntd)

f # List-decoding: given corrupted codeword w € {0,1}™ T
and error bound e, output list {z : d(w, E(x)) < e}

# For Hadamard code: if e < (1/2 — ¢)m,
then this list has only O(1/£?) elements!
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List-decoding of Hadamard code (cntd)
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# List-decoding: given corrupted codeword w € {0,1}™
and error bound e, output list {z : d(w, E(x)) < e}

# For Hadamard code: if e < (1/2 — ¢)m,
then this list has only O(1/£?) elements!

» Why?

o |
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# List-decoding: given corrupted codeword w € {0,1}™
and error bound e, output list {z : d(w, E(x)) < e}

# For Hadamard code: if e < (1/2 — ¢)m,
then this list has only O(1/£?) elements!

# Why? Fourier analysis!
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List-decoding of Hadamard code (cntd)
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# List-decoding: given corrupted codeword w € {0,1}™
and error bound e, output list {z : d(w, E(x)) < e}

# For Hadamard code: if e < (1/2 — ¢)m,
then this list has only O(1/£?) elements!

# Why? Fourier analysis!
1. View w as function w : {0,1}" — {£1}, and E(s) = xs
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# List-decoding: given corrupted codeword w € {0,1}™
and error bound e, output list {z : d(w, E(x)) < e}

# For Hadamard code: if e < (1/2 — ¢)m,
then this list has only O(1/£?) elements!

# Why? Fourier analysis!
1. View w as function w : {0,1}" — {£1}, and E(s) = xs
2. Ifd(w,E(s)) < (1/2 —¢e)m, then w(s) > 2¢
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# List-decoding: given corrupted codeword w € {0,1}™
and error bound e, output list {z : d(w, E(x)) < e}

# For Hadamard code: if e < (1/2 — ¢)m,
then this list has only O(1/£?) elements!

# Why? Fourier analysis!
1. View w as function w : {0,1}" — {£1}, and E(s) = xs
2. Ifd(w,E(s)) < (1/2 —¢e)m, then w(s) > 2¢
3. Y. w(s)* =1 (by Parseval)
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List-decoding of Hadamard code (cntd)
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# List-decoding: given corrupted codeword w € {0,1}™
and error bound e, output list {z : d(w, E(x)) < e}

# For Hadamard code: if e < (1/2 — ¢)m,
then this list has only O(1/£?) elements!

# Why? Fourier analysis!
1. View w as function w : {0,1}" — {£1}, and E(s) = xs
2. Ifd(w, E(s)) < (1/2 — ¢)m, then w(s) > 2¢
3. Y. w(s)* =1 (by Parseval),
hence at most é different s satisfy w(s) > 2¢
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List-decoding of Hadamard code (cntd)
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# List-decoding: given corrupted codeword w € {0,1}™
and error bound e, output list {z : d(w, E(x)) < e}

# For Hadamard code: if e < (1/2 — ¢)m,
then this list has only O(1/£?) elements!

# Why? Fourier analysis!
1. View w as function w : {0,1}" — {£1}, and E(s) = xs
2. Ifd(w, E(s)) < (1/2 — ¢)m, then w(s) > 2¢
3. Y. w(s)* =1 (by Parseval),
hence at most ﬁ different s satisfy w(s) > 2¢

# Goldreich and Levin show how to find this list efficiently
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List-decoding of Hadamard code (cntd)
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# List-decoding: given corrupted codeword w € {0,1}™
and error bound e, output list {z : d(w, E(x)) < e}

# For Hadamard code: if e < (1/2 — ¢)m,
then this list has only O(1/£?) elements!

# Why? Fourier analysis!
1. View w as function w : {0,1}" — {£1}, and E(s) = xs
2. Ifd(w, E(s)) < (1/2 — ¢)m, then w(s) > 2¢
3. Y. w(s)* =1 (by Parseval),
hence at most ﬁ different s satisfy w(s) > 2¢

# Goldreich and Levin show how to find this list efficiently

® There are codes with much better rate that are still
efficiently list-decodable J

Fourier analysis of Boolean functions: Some beautiful examples — p.9/13



List-decoding of Hadamard code (cntd)
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# List-decoding: given corrupted codeword w € {0,1}™
and error bound e, output list {z : d(w, E(x)) < e}

# For Hadamard code: if e < (1/2 — ¢)m,
then this list has only O(1/£?) elements!

# Why? Fourier analysis!
1. View w as function w : {0,1}" — {£1}, and E(s) = xs
2. Ifd(w, E(s)) < (1/2 — ¢)m, then w(s) > 2¢
3. Y. w(s)* =1 (by Parseval),
hence at most ﬁ different s satisfy w(s) > 2¢

# Goldreich and Levin show how to find this list efficiently

® There are codes with much better rate that are still
efficiently list-decodable (e.g. Reed-Solomon) J
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# Consider a Boolean function f: {0,1}"* — {0,1}
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(4) Influence of variables
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# Consider a Boolean function f : {0,1}" — {0,1}

# The influence of variable i is the probability that z;
determines the function value

o |
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(4) Influence of variables

-

# Consider a Boolean function f : {0,1}" — {0,1}

# The influence of variable i is the probability that z;
determines the function value:

Infr(i) = Pr [f(x) # f(z @ e)]

xe{0,1}n
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(4) Influence of variables
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# Consider a Boolean function f : {0,1}" — {0,1}

# The influence of variable i is the probability that z;
determines the function value:

Infr(i) = Pr [f(x) # f(z @ e)]

xe{0,1}n

# For things like voting and distributed coin-flipping:
would like to find a balanced f where each Inf¢(i) ~ 1/n
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(4) Influence of variables
f.o Consider a Boolean function f : {0,1}" — {0,1} T

# The influence of variable i is the probability that z;
determines the function value:

Infr(i) = Pr [f(x) # f(z @ e)]

xe{0,1}n

# For things like voting and distributed coin-flipping:
would like to find a balanced f where each Inf¢(i) ~ 1/n

o KKL 88: if f Is balanced, then
there always Is an i with Inf¢(i) > log(n)/n

o |

Fourier analysis of Boolean functions: Some beautiful examples — p.10/13



(4) Influence of variables

-

Consider a Boolean function f : {0,1}" — {0,1}

The influence of variable i is the probability that x;
determines the function value:

Infr(i) = Pr [f(x) # f(z @ e)]

xe{0,1}m
For things like voting and distributed coin-flipping:
would like to find a balanced f where each Inf¢(i) ~ 1/n

KKL 88: If f Is balanced, then
there always Is an i with Inf¢(i) > log(n)/n

This implies there is a set of O(n/log(n)) variables that
controls f with high probability
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The KKL proof
-

® Define fi(z) = f(z) — f(z D &)
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The KKL proof
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# Define fi(x) = f(z) — f(x D e;) € {—1,0,+1}
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The KKL proof
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# Define fi(x) = f(z) — f(x D e;) € {—1,0,+1}
® Then f;(s) = 2f(s) if s; = 1

o |

Fourier analysis of Boolean functions: Some beautiful examples — p.11/13



The KKL proof
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# Define fi(x) = f(z) — f(x D e;) € {—1,0,+1}
® Then f;(s) = 2f(s)ifs; =1, and fi(s) =0if s; = 0
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The KKL proof
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# Define fi(x) = f(z) — f(x D e;) € {—1,0,+1}
® Then f;(s) = 2f(s)ifs; =1, and fi(s) =0if s; = 0

< Inff(i)
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The KKL proof
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® Define fi(z) = f(z) — f(x B e;) € {—1,0,+1}
® Then f;(s) =2f(s)ifs;=1,and fi(s) =0if s; = 0

9 Inff(i) = Pr[f; # 0]
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The KKL proof
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® Define fi(z) = f(z) — f(x B e;) € {—1,0,+1}
® Then f;(s) =2f(s)ifs;=1,and fi(s) =0if s; = 0

® Infy(i) = Pr[f; # 0] = Exp[f?]
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The KKL proof
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® Define fi(z) = f(z) — f(x B e;) € {—1,0,+1}
® Then f;(s) =2f(s)ifs;=1,and fi(s) =0if s; = 0

AN

8 infy(i) = Prlfi # 0] = Explf2] = 3 fils)?

S
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® Define fi(z) = f(z) — f(x B e;) € {—1,0,+1}
® Then f;(s) =2f(s)if s, = 1, and ﬁ-( )—Oifsi—()

® Inf(i) =Prlfi 0] =Exp[fI] = > fils)? =4 >  f(s

S s:8;,=1
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The KKL proof
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® Define fi(z) = f(z) — f(x B e;) € {—1,0,+1}
® Then f;(s) =2f(s)if s, = 1, and ﬁ-( )—Oifsi—()

® Inf(i) =Prlfi 0] =Exp[fI] = > fils)? =4 >  f(s

S s:8;,=1

® I L =3 51000 f(5)> = 1/3
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The KKL proof
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® Define fi(z) = f(z) — f(x B e;) € {—1,0,+1}
® Then f;(s) =2f(s)if s, = 1, and ﬁ-( )—Oifsi—()

® Inf(i) =Prlfi 0] =Exp[fI] = > fils)? =4 >  f(s

S s:8;,=1

® L =31 s10gn f(5)? > 1/3, then I Inf (i)
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The KKL proof
=

Define fi(x) = f(z) — f(r B e;) € {—1,0,+1}

® Then f;(s) = 2f(s) ifsizl,andﬁ-( )—Oifsi—()

9 Inff(i) = Pr[fi + 0] = Exp[fg] — Z =4 Z f 2

S s:8;,=1

If L = Z |>10gn F(s)? > 1/3, then > iy Infp(7)
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The KKL proof
=

Define fi(x) = f(z) — f(r B e;) € {—1,0,+1}

® Then f;(s) = 2f(s) ifsizl,andﬁ-( )—Oifsi—()

9 Inff(i) = Pr[fi + 0] = Exp[fg] — Z =4 Z f 2

S s:8;,=1

IfL =2 4 s/>l0gn F(s)? > 1/3, then > iy Infp(7)
=43, |s|f(5)* = Q(log n)
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The KKL proof
=

Define fi(x) = f(z) — f(r B e;) € {—1,0,+1}

® Then f;(s) = 2f(s) ifsizl,andﬁ-( ):Oifsi:()

® Inf(i) =Prlfi 0] =Exp[fI] = > fils)? =4 >  f(s

S s:8;,=1

If L = Zsz|s|>logn J/B\(S)z > 1/3 then Zz 1 Inff( )
— 43, |s|f(s)2 > Q(logn) = max; Infs(i) > Q(log(n)/n)
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The KKL proof
=

® Define fi(z) = f(z) — f(x B e;) € {—1,0,+1}
® Then fi(s) = 2f(s )ifs@-:1 and fi(s) =0if s; =0

® Infr(i) = Pr[f; # 0] = Explf Zf@ =4 ) f(s)?

s:8;,=1

o If L= ZS:|8|>IOgnf(s)2 > 1/3, then >0 | Inf¢(7)
— 43, |s|f(s)2 > Q(logn) = max; Infs(i) > Q(log(n)/n)

® If L <1/3,then use KKL inequality (special case of
Bonami-Beckner):
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The KKL proof

® Define fi(z) = f(z) — f(x B e;) € {—1,0,+1}
® Then fi(s) = 2f(s )ifs@-:1 and fi(s) =0if s; =0

® Infr(i) = Pr[f; # 0] = Explf Zf@ =4 ) f(s)?

s:8;,=1

o If L= ZS:|8|>IOgnf(s)2 > 1/3, then >0 | Inf¢(7)
— 43, |s|f(s)2 > Q(logn) = max; Infs(i) > Q(log(n)/n)
® If L <1/3,then use KKL inequality (special case of
Bonami-Beckner): Vg : {0,1}" — {—1,0,+1}, 0 € [0, 1]

S §elgs)? < Prlg 01+
s€{0,1}"
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The KKL proof

® Define fi(z) = f(z) — f(x B e;) € {—1,0,+1}
® Then fi(s) = 2f(s )ifs@-:1 and fi(s) =0if s; =0
® Infr(i) = Pr[f; # 0] = Explf Zfz =4 ) f(s)?

s:8;,=1

o If L= ZS:|8|>IOgnf(s)2 > 1/3, then >0 | Inf¢(7)
— 43, |s|f(s)2 > Q(logn) = max; Infs(i) > Q(log(n)/n)
® If L <1/3,then use KKL inequality (special case of
Bonami-Beckner): Vg : {0,1}" — {—1,0,+1}, 0 € [0,1]
S oblg(s)? < Prlg £ 0]+
s€{0,1}"

L A calculation shows max; Inf¢ (i) > Q(log(n)/n)
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Summary

- N

# Fourier analysis of Boolean functions is an increasingly
prominent tool in theoretical computer science

o |
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# Fourier analysis of Boolean functions is an increasingly
prominent tool in theoretical computer science

# We showed a few simple but beautiful examples:
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# Fourier analysis of Boolean functions is an increasingly
prominent tool in theoretical computer science

# We showed a few simple but beautiful examples:

1. Approximating low-degree functions by parities
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# Fourier analysis of Boolean functions is an increasingly
prominent tool in theoretical computer science

# We showed a few simple but beautiful examples:

1. Approximating low-degree functions by parities

2. List-decoding of Hadamard codes
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Summary
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# Fourier analysis of Boolean functions is an increasingly
prominent tool in theoretical computer science

# We showed a few simple but beautiful examples:

1. Approximating low-degree functions by parities
2. List-decoding of Hadamard codes

3. Learning under the uniform distribution
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Summary
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# Fourier analysis of Boolean functions is an increasingly
prominent tool in theoretical computer science

# We showed a few simple but beautiful examples:

1. Approximating low-degree functions by parities
2. List-decoding of Hadamard codes
3. Learning under the uniform distribution

4. The influence of variables on Boolean functions

o |
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Warning: these are powerful techniques!
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HEJ Dr. E"-'zabg-]'h?
Yeoh, vh... T acc«ldaﬂu\b teok
_ﬁ'f Fourier transform of My cat ...
!

¢

T
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